MHB Can You Prove This Inequality Challenge?

Opalg
Gold Member
MHB
Messages
2,778
Reaction score
13
In a recent https://mathhelpboards.com/threads/inequality-challenge.27634/#post-121156, anemone asked for a proof that $1-x + x^4 - x^9 + x^{16} - x^{25} + x^{36} > 0$. When I graphed that function, I noticed that in fact it is never less than $\frac12$. If you add more terms to the series, this becomes even more apparent:

https://www.physicsforums.com/attachments/311520._xfImport

So the challenge is to prove that$$ \sum_{r=0}^{2n}(-1)^rx^{r^2} = 1-x + x^4 - x^9 + x^{16} -\ldots + x^{(2n)^2} > \frac12$$ for all $x$ such that $0<x<1$ (outside that interval the result is obvious anyway).
 
Mathematics news on Phys.org
For $0<x<1$ the infinite series $$\sum_{r=0}^\infty (-1)^rx^{r^2}$$ is convergent. It is an alternating series, where the terms alternate in sign and decrease in absolute value. It has the property that the partial sums are alternately greater than, and less than, the sum of the whole series.

Let $$S = \sum_{r=0}^\infty (-1)^rx^{r^2}$$, and for $n\geqslant 1$ let $$S_n = \sum_{r=0}^n (-1)^rx^{r^2}$$. Then $S_{2n-1}<S<S_{2n}$. So to prove that $S_{2n} > \frac12$ it will be sufficient to show that $S\geqslant\frac12$.

To investigate $S$, use the Jacobi triple product, which says that $$\sum_{n=-\infty}^\infty x^{n^2}y^{2n} = \prod_{m=1}^\infty (1-x^{2m})(1+x^{2m-1}y^2)\left(1+\frac{x^{2m-1}}{y^2}\right)$$ for complex numbers $x,y$ with $|x|<1$ and $y\ne0$. For $0<x<1$ and $y=i$ that gives $$\sum_{n=-\infty}^\infty(-1)^n x^{n^2} = \prod_{m=1}^\infty (1-x^{2m})\bigl(1-(-1)^nx^{2m-1}\bigr)^2.$$ Each factor in that product is positive, so the infinite product must be positive or zero. Therefore $$\sum_{n=-\infty}^\infty(-1)^n x^{n^2} \geqslant 0.$$ But $$\sum_{n=-\infty}^\infty(-1)^n x^{n^2} = \sum_{n=-\infty}^0(-1)^n x^{n^2} + \sum_{n=0}^\infty(-1)^n x^{n^2} - 1$$ (the $-1$ coming from the fact that otherwise the $n=0$ term would be counted twice). Also, $(-1)^n x^{n^2}$ is the same for $-n$ as it is for $+n$. Therefore $2S-1\geqslant0$, so that $S\geqslant\frac12$, as required.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
998
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top