MHB Can You Prove this Specific Inequality Involving Positive Integers?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Positive integers $l,\,k,\,m,\,n$ satisfying $l+m \le 1982$ and $\dfrac{l}{k}+\dfrac{m}{n}<1$. Prove that $1-\dfrac{l}{k}-\dfrac{m}{n}>\dfrac{1}{1983^3}$.
 
Last edited:
Mathematics news on Phys.org
Hint:

Let $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}$ for some positive integer $a$. And see what happens if we let $a>n$ and $a\le n$.

The skill of using the concept of contradicting of minimality with respect to certain variable helps too.
 
Solution of other:

Let us consider the general case with 1982 replaced by $P$. We have $l
\dfrac{1}{P}$. So there is no need in making $n$ too big.

Certainly we must have $n<2Pm<2P^2$. Similarly for $k$. So there are only finitely many candidates for $l,\,m,\,n,\,k$. Hence there is a set of values which minimizes $1-\dfrac{l}{k}-\dfrac{m}{n}$. Let us adopt these values.

Clearly $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}$ for some positive integer $a$. We may assume that $k>n$. The fact that $l,\,m,\,n,\,k$ is an optimal set means that $a$ cannot be too large. Multiplying across, $a=kn-ln-km$. So if $a>n$, we could increase $l$ by 1. That would reduce $1-\dfrac{l}{k}-\dfrac{m}{n}$ to $\dfrac{a-n}{kn}$, contradicting minimality. So, $a\le n$.

Now, $kn=a+ln+km\le a+lk+km=a+k(l+m)\le a+kP$. Hence, $n\le P+\dfrac{a}{k}\le P+1$.

But $\dfrac{a}{kn}+\dfrac{l}{k}=1-\dfrac{m}{n}\ge \dfrac{1}{n}\ge \dfrac{1}{P+1}$.

We have $\dfrac{a}{kn}+\dfrac{l}{k}=\dfrac{1}{k(l+1)}\le \dfrac{1}{k(l+1)}\le \dfrac{1}{kP}$. So, $\dfrac{1}{k}\ge \dfrac{1}{P(P+1)}>\dfrac{1}{(P+1)^2}$.

Hence $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}>\dfrac{a}{(P+1)^3}\ge \dfrac{1}{(P+1)^3}=\dfrac{1}{1983^3}$.
 
I am thinking it would be nice to show another variant of the same problem that uses other method to tackle it...here goes the problem:

Let $l,\,k,\,m,\,n\in\Bbb{Z_+}$ and $a=1-\dfrac{l}{k}-\dfrac{m}{n}$. If $a>0$ and $l+m\le 1982$, then prove that $a>\dfrac{1}{1983^3}$.

We have 3 cases to analyze:

Case I: If $k,\,n\ge 1983$, then $a\ge 1-\dfrac{l+m}{1983}\ge 1-\dfrac{1982}{1983}>\dfrac{1}{1983^3}$.

Case II: if $k,\,n\le 1983$, then $a=\dfrac{kn-ln-km}{kn}>0$ so that $kn-ln-km \ge 1$. Thus, $a\ge \dfrac{1}{kn}>\dfrac{1}{1983^3}$.

Case III:

Suppose now that $k<1983<n$, if $n>1983^2$ and $a<\dfrac{1}{1983^3}$, then $\dfrac{m}{n}<\dfrac{1982}{1983}$, thus, $1-\dfrac{l}{k}<\dfrac{1}{1983}$. This implies that $k>1983(k-l)>1983$ because $l\le k+1$, which is absurd. If $n\le 1983^2$, then as in the case II above, we have $a\ge \dfrac{1}{kn}>\dfrac{1}{1983^3}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top