Can You Prove this Specific Inequality Involving Positive Integers?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion centers around proving a specific inequality involving positive integers \( l, k, m, n \) under certain conditions. The scope includes mathematical reasoning and potentially exploring different approaches to the problem.

Discussion Character

  • Mathematical reasoning, Exploratory

Main Points Raised

  • One participant presents the inequality to be proven, which involves conditions on the integers \( l, m, k, n \).
  • Another participant provides a hint, though the content of the hint is not specified.
  • A third participant mentions a solution to a different problem, suggesting a potential connection or alternative approach.
  • A later reply proposes showing another variant of the problem, indicating interest in exploring different methods to tackle the original inequality.

Areas of Agreement / Disagreement

The discussion remains unresolved, with no consensus on the proof or methods to approach the inequality. Multiple perspectives and approaches are being explored.

Contextual Notes

Participants have not fully defined the parameters or assumptions underlying the inequality, and the hint provided lacks detail, leaving some aspects of the problem open to interpretation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Positive integers $l,\,k,\,m,\,n$ satisfying $l+m \le 1982$ and $\dfrac{l}{k}+\dfrac{m}{n}<1$. Prove that $1-\dfrac{l}{k}-\dfrac{m}{n}>\dfrac{1}{1983^3}$.
 
Last edited:
Mathematics news on Phys.org
Hint:

Let $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}$ for some positive integer $a$. And see what happens if we let $a>n$ and $a\le n$.

The skill of using the concept of contradicting of minimality with respect to certain variable helps too.
 
Solution of other:

Let us consider the general case with 1982 replaced by $P$. We have $l
\dfrac{1}{P}$. So there is no need in making $n$ too big.

Certainly we must have $n<2Pm<2P^2$. Similarly for $k$. So there are only finitely many candidates for $l,\,m,\,n,\,k$. Hence there is a set of values which minimizes $1-\dfrac{l}{k}-\dfrac{m}{n}$. Let us adopt these values.

Clearly $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}$ for some positive integer $a$. We may assume that $k>n$. The fact that $l,\,m,\,n,\,k$ is an optimal set means that $a$ cannot be too large. Multiplying across, $a=kn-ln-km$. So if $a>n$, we could increase $l$ by 1. That would reduce $1-\dfrac{l}{k}-\dfrac{m}{n}$ to $\dfrac{a-n}{kn}$, contradicting minimality. So, $a\le n$.

Now, $kn=a+ln+km\le a+lk+km=a+k(l+m)\le a+kP$. Hence, $n\le P+\dfrac{a}{k}\le P+1$.

But $\dfrac{a}{kn}+\dfrac{l}{k}=1-\dfrac{m}{n}\ge \dfrac{1}{n}\ge \dfrac{1}{P+1}$.

We have $\dfrac{a}{kn}+\dfrac{l}{k}=\dfrac{1}{k(l+1)}\le \dfrac{1}{k(l+1)}\le \dfrac{1}{kP}$. So, $\dfrac{1}{k}\ge \dfrac{1}{P(P+1)}>\dfrac{1}{(P+1)^2}$.

Hence $1-\dfrac{l}{k}-\dfrac{m}{n}=\dfrac{a}{kn}>\dfrac{a}{(P+1)^3}\ge \dfrac{1}{(P+1)^3}=\dfrac{1}{1983^3}$.
 
I am thinking it would be nice to show another variant of the same problem that uses other method to tackle it...here goes the problem:

Let $l,\,k,\,m,\,n\in\Bbb{Z_+}$ and $a=1-\dfrac{l}{k}-\dfrac{m}{n}$. If $a>0$ and $l+m\le 1982$, then prove that $a>\dfrac{1}{1983^3}$.

We have 3 cases to analyze:

Case I: If $k,\,n\ge 1983$, then $a\ge 1-\dfrac{l+m}{1983}\ge 1-\dfrac{1982}{1983}>\dfrac{1}{1983^3}$.

Case II: if $k,\,n\le 1983$, then $a=\dfrac{kn-ln-km}{kn}>0$ so that $kn-ln-km \ge 1$. Thus, $a\ge \dfrac{1}{kn}>\dfrac{1}{1983^3}$.

Case III:

Suppose now that $k<1983<n$, if $n>1983^2$ and $a<\dfrac{1}{1983^3}$, then $\dfrac{m}{n}<\dfrac{1982}{1983}$, thus, $1-\dfrac{l}{k}<\dfrac{1}{1983}$. This implies that $k>1983(k-l)>1983$ because $l\le k+1$, which is absurd. If $n\le 1983^2$, then as in the case II above, we have $a\ge \dfrac{1}{kn}>\dfrac{1}{1983^3}$.
 

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K