MHB Can you prove this trigonometric identity?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on proving the trigonometric identity $\dfrac{1+\sin 6^{\circ}+\cos 12^{\circ}}{\cos 6^{\circ}+\sin 12^{\circ}}=\sqrt{3}$. Two members, laura123 and kaliprasad, provided correct solutions using different methods. The solutions highlight various approaches to simplifying the expression and verifying the identity. Both methods successfully demonstrate the equality, showcasing the versatility in solving trigonometric identities. The thread emphasizes the importance of diverse problem-solving techniques in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1+\sin 6^{\circ}+\cos 12^{\circ}}{\cos 6^{\circ}+\sin 12^{\circ}}=\sqrt{3} $.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. laura123
2. kaliprasad

I'll show both solutions since they are different in the method of approaching.(Yes)

Here's laura123's solution:
Since $\cos 36°=\dfrac{\sqrt{5}+1}{4}$ and $\sin 18°=\dfrac{\sqrt{5}-1}{4}$ it follows:
$\cos 36°-\sin 18°=\dfrac{1}{2}$
$\cos (30°+6°)-\sin (30°-12°)=\dfrac{1}{2}$
$\cos 30°\cos 6°-\sin 30°\sin 6°-\sin 30°\cos 12°+\cos 30°\sin 12°=\dfrac{1}{2}$
$\dfrac{\sqrt{3}}{2}\cos 6°-\dfrac{1}{2}\sin 6°-\dfrac{1}{2}\cos 12°+\dfrac{\sqrt{3}}{2}\sin 12°=\dfrac{1}{2}$
$\sqrt{3}\cos 6°-\sin 6°-\cos 12°+\sqrt{3}\sin 12°=1$
$\sqrt{3}\cos 6°+\sqrt{3}\sin 12°=1+\sin 6°+\cos 12°$
$\sqrt{3}(\cos 6°+\sin 12°)=1+\sin 6°+\cos 12°$
$\dfrac{\sqrt{3}(\cos 6°+\sin 12°)}{\cos 6°+\sin 12°}=\dfrac{1+\sin 6°+\cos 12°}{\cos 6°+\sin 12°}$
$\sqrt{3}=\dfrac{1+\sin 6°+\cos 12°}{\cos 6°+\sin 12°}$.

Here's kaliprasad's solution:
First, note that

$\cos(36^\circ) - \cos(72^\circ)$
= $2 * \sin(18^\circ) * \sin(54^\circ)$
= $\dfrac{1}{2} * \dfrac{\sin(2*18)^\circ * \sin(2*54)^\circ }{\cos(18)^\circ * \cos(54)^\circ}$
= $\dfrac{1}{2} * \dfrac{\sin(36^\circ) * \sin(108^\circ)}{ (\sin(108^\circ) * \sin(36^\circ)})$
= $\dfrac{1}{2}$

We then have
$1+ \sin\ 6^\circ + \cos \ 12^\circ$
= $2(\dfrac{1}{2} +\dfrac{1}{2} \sin\ 6^\circ + \dfrac{1}{2}\cos \ 12^\circ)$
= $2(\dfrac{1}{2} +\cos \ 60^\circ \sin\ 6^\circ + \cos \ 60^\circ\cos \ 12^\circ)$
= $2 ( \dfrac{1}{2}- \sin (60-6)^\circ + \sin 60^\circ \cos 6^\circ + \cos 72^\circ + \sin 60^\circ \sin 12^\circ )$
= $2 ( \dfrac{1}{2}- \sin\ 54^\circ + \sin 60^\circ \cos 6^\circ + \cos 72^\circ + \sin 60^\circ \sin 12^\circ )$
= $2 ( \sin 60^\circ (\cos 6^\circ + \sin 12^\circ ) + \dfrac{1}{2} + \cos 72^\circ - \cos 36^\circ )$
=$2 ( \sin 60^\circ (\cos 6^\circ + \sin 12^\circ ) + \dfrac{1}{2} -( \cos 36^\circ-\cos 72^\circ )$
=$2 ( \sin 60^\circ (\cos 6^\circ + \sin 12^\circ ) + \dfrac{1}{2} -\dfrac{1}{2}$
= $2 \sin 60^\circ ( \cos 6^\circ + \sin 12^\circ )$
= $\dfrac{ 1 + \sin 6^\circ + \cos 12^\circ }{\cos 6^\circ + \sin 12^\circ } = 2 \sin 60^\circ = \sqrt(3)$
 
Back
Top