Can You Simplify This Trigonometric Expression?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The expression evaluated is $\dfrac{1}{\sin 6^{\circ}}+\dfrac{1}{\sin 78^{\circ}}-\dfrac{1}{\sin 42^{\circ}}-\dfrac{1}{\sin 66^{\circ}$. The correct solution was provided by user lfdahl, demonstrating the simplification of trigonometric identities and the use of complementary angles. The discussion highlights the importance of understanding sine functions and their properties in solving complex trigonometric expressions.

PREREQUISITES
  • Understanding of trigonometric identities
  • Knowledge of sine function properties
  • Familiarity with complementary angles in trigonometry
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study advanced trigonometric identities
  • Learn about the Law of Sines and its applications
  • Explore the unit circle and its relevance to trigonometric functions
  • Practice simplifying complex trigonometric expressions
USEFUL FOR

Students of mathematics, educators teaching trigonometry, and anyone interested in enhancing their skills in simplifying trigonometric expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $\dfrac{1}{\sin 6^{\circ}}+\dfrac{1}{\sin 78^{\circ}}-\dfrac{1}{\sin 42^{\circ}}-\dfrac{1}{\sin 66^{\circ}}$.

-----

 
Physics news on Phys.org
Congratulations to lfdahl for his correct solution (Cool) , which you can find below:
\[\frac{1}{\sin 6^{\circ}}+\frac{1}{\sin 78^{\circ}}-\frac{1}{\sin 42^{\circ}}-\frac{1}{\sin 66^{\circ}} \\\\\\=\frac{\sin 66^{\circ}-\sin 6^{\circ}}{\sin 6^{\circ} \sin 66^{\circ}}+\frac{\sin 42^{\circ}-\sin 78^{\circ}}{\sin 42^{\circ} \sin 78^{\circ}} \\\\\\= \frac{2\sin \left ( \frac{66^{\circ}-6^{\circ}}{2} \right )\cos \left ( \frac{66^{\circ}+6^{\circ}}{2}\right )}{\frac{1}{2}\left ( \cos (66^{\circ}-6^{\circ}) -\cos \left ( 66^{\circ}+6^{\circ}\right )\right )}+\frac{2\sin \left ( \frac{42^{\circ}-78^{\circ}}{2} \right )\cos \left ( \frac{42^{\circ}+78^{\circ}}{2}\right )}{\frac{1}{2}\left ( \cos (42^{\circ}-78^{\circ}) -\cos \left ( 42^{\circ}+78^{\circ}\right )\right )} \\\\\\=\frac{2 \sin 30^{\circ}\cos 36^{\circ}}{\frac{1}{2}\left ( \cos 60^{\circ}-\cos 72^{\circ} \right )}-\frac{2 \sin 18^{\circ}\cos 60^{\circ}}{\frac{1}{2}\left ( \cos 36^{\circ}-\cos 120^{\circ} \right )} \\\\\\=\underbrace{\frac{4\cos 36^{\circ}}{1-\cos(2\cdot 36^{\circ})}}_A\underbrace{-\frac{4\cos(2\cdot 36^{\circ})}{1+2\cos 36^{\circ}}}_B\]
Let $\alpha = \cos 36^{\circ}$:

\[A = \frac{4\alpha }{3-4\alpha ^2}, \;\;\; B = \frac{4-8\alpha ^2}{1+2\alpha }\]

It is not hard to show*, that: $\alpha = \frac{1+\sqrt{5}}{4}$. Inserting this in $A$ and $B$ yields:

\[A = \frac{2+2\sqrt{5}}{3-\sqrt{5}},\;\;\;B = \frac{2-2\sqrt{5}}{3+\sqrt{5}}\]

Finally, we get: \[A + B = 8.\]

(*). I use the well-known trick to calculate $\sin 18^{\circ}$ first:

Put $Y = 18^{\circ}$.

Then $\sin 2Y = \cos 3Y \rightarrow 2\sin Y\cos Y = 4\cos^3Y-3\cos Y \rightarrow \\\\ 2 \sin Y = 4(1-\sin^2Y) -3 \rightarrow 4\sin^2Y +2\sin Y-1 = 0$ - the solution of which is: $\sin Y = \sin 18^{\circ} = \frac{\sqrt{5}-1}{4}$.

With $\cos 36^{\circ} = 1 – 2 \sin^2 18^{\circ}$ we immediately have the result.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K