Here's a similar solution to two 4s, two 9s, 0 to 232:
With one 4 one 9, one can generate a +-13 span,
0=*(.9..)^4
1=Sqrt[4]-(.9..)
2=Sqrt[4]*(.9..)
3=4-(.9...)
4=4*(.9...)
5=4+(.9...)
6=Sqrt[9]*Sqrt[4]
7=Sqrt[9]+4
8=Sqrt[9]!+Sqrt[4]
9=Sqrt[9]^Sqrt[4]
10=Sqrt[9]!+4
11=9+Sqrt[4]
12=Sqrt[9]*4
13=9+4
Neg by -same. Note that +-0 or *1 can no longer be considered obvious (though not amazingly hard either), there is no single four op to 1 or 0. Thus, 9=9, for instance, doesn't adequitly show that you can get rid of your (in this case) extra 4.
The following ranges can then be covered (Gaps noticed rather then covered):
9+4=13 {0,26}
4*9=36 {23,49}
49 {36,62}
4!*Sqrt[9]=72 {59,85}
94 {81,107}
(4+(.9..))!=120 {107,133}
4!*(Sqrt[9]!)=144 {131,157}
-- Gap {158,166}
(Sqrt[9]!)/4=180 {167,193}
Gap {194,202}
4!*9=216 {203,229}
-- Gap {230,232}
Then,
Covering {158,166}:
9*9*Sqrt[4] w/ -4,-2,+2,+4 covers 158 160 164 166
Sqrt[9]^4*Sqrt[4] w/ -3,-1,*1,+1,+3 covers 159 161 162 163 165
Covering {194,202}:
99*Sqrt[4] w/ -4,-2,+2,+4 covers 194 196 200 202
49*4 w/ -1,+3 covers 195 199
197=94*Sqrt[4]+9
198=99*Sqrt[Sqrt[4]]^Sqrt[4]
201=(4!-Sqrt[4])*9+Sqrt[9]
Covering {230,232}:
230=(4!-(.9..))*(Sqrt[9]!+4)
231=(4!+Sqrt[4])*9-Sqrt[9]
232=(Sqrt[9]!)^(Sqrt[9])+4*4
Which should altogether cover {0,232}. As a bonus,
(4!+Sqrt[4])*9 w/ -1,*1,+1 takes the next three - 233,234,235. Sorry if this is a bit longish, kind of needed lots of lines rather then long ones..