MHB Can You Solve the Summation of Series Challenge Using Cauchy-Schwarz Inequality?

Click For Summary
The challenge involves proving the inequality $\left(\sum_{k=1}^{n} \sqrt{\dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}}}\right)^2\le n\sqrt{\dfrac{n}{n+1}}$ for positive integers n. The Cauchy-Schwarz inequality is identified as the essential tool for solving this problem. Participants discuss the application of this inequality to derive the necessary proof. The conversation emphasizes the importance of understanding the underlying mathematical principles. Engaging with this challenge enhances problem-solving skills in mathematical inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\displaystyle\left(\sum_{k=1}^{n} \sqrt{\dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}}}\right)^2\le n\sqrt{\dfrac{n}{n+1}}$, where $n$ is a positive integer.
 
Mathematics news on Phys.org
anemone said:
Prove that $\displaystyle\left(\sum_{k=1}^{n} \sqrt{\dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}}}\right)^2\le n\sqrt{\dfrac{n}{n+1}}$, where $n$ is a positive integer.

By the Cauchy-Schwarz inequality,

$\displaystyle\left(\sum_{k=1}^{n} \sqrt{\dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}}}\right)^2 \le n \sum_{k=1}^{n} \dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}} = n \sum_{k = 1}^n \left(\sqrt{\frac{k}{k+1}} - \sqrt{\frac{k-1}{k}}\right) = n\sqrt{\frac{n}{n+1}} $.
 
Euge said:
By the Cauchy-Schwarz inequality,

$\displaystyle\left(\sum_{k=1}^{n} \sqrt{\dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}}}\right)^2 \le n \sum_{k=1}^{n} \dfrac{k-\sqrt{k^2-1}}{\sqrt{k(k+1)}} = n \sum_{k = 1}^n \left(\sqrt{\frac{k}{k+1}} - \sqrt{\frac{k-1}{k}}\right) = n\sqrt{\frac{n}{n+1}} $.

Thanks for participating, Euge!

Yes, the key to unlock this problem is the Cauchy-Schwarz inequality. Good job, Euge!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
722
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K