MHB Can You Solve the Trigonometric Equation for \(\tan^2 9^\circ\)?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
AI Thread Summary
The discussion centers on proving the equation \(\tan^2 9^\circ=\sqrt{201+88\sqrt{5}}-\sqrt{200+88\sqrt{5}}\). Participants are encouraged to follow the Problem of the Week (POTW) guidelines for submissions. Several members, including greg1313, kaliprasad, and lfdahl, successfully provided correct solutions. The thread highlights the collaborative effort in solving this trigonometric equation. Engaging with such problems enhances mathematical understanding and problem-solving skills.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that $$\tan^2 9^\circ=\sqrt{201+88\sqrt{5}}-\sqrt{200+88\sqrt{5}}$$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution::)

1. greg1313
2. kaliprasad
3. lfdahl

Solution from greg1313:
All arguments are in degrees.

$$\cos72=\sin18=\sqrt{\frac{1-\cos36}{2}}$$

$$\begin{align*}\frac{1-\cos36}{2}&=(2\cos^236-1)^2 \\
&=4\cos^436-4\cos^236+1 \\
&\Rightarrow8\cos^436-8\cos^236+\cos36+1=0 \\
&\Rightarrow(2\cos36-1)(\cos36+1)(4\cos^236-2\cos36-1)=0 \\
&\Rightarrow\cos36=\frac{1+\sqrt5}{4}\end{align*}$$

$$\begin{align*}\cos36=\frac{1+\sqrt5}{4}&=2\cos^218-1 \\
&=2(2\cos^29-1)^2-1 \\
&=8\cos^49-8\cos^29+1 \\
&\Rightarrow32\cos^49-32\cos^29+3-\sqrt5=0 \\
&\Rightarrow\cos^29=\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}\end{align*}$$

$$\begin{align*}\tan^29&=\sec^29-1 \\
&=\frac{1}{\cos^29}-1 \\
&=\frac{1}{\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}}-1 \\
&=\frac{\frac12-\sqrt{\frac{1}{32}(5+\sqrt5)}}{\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}} \\
&=\frac{4-\sqrt{2(5+\sqrt5)}}{4+\sqrt{2(5+\sqrt5)}} \\
&=\frac{26+2\sqrt5-8\sqrt{2(5+\sqrt5)}}{6-2\sqrt5} \\
&=\frac{156+12\sqrt5-48\sqrt{2(5+\sqrt5)}+52\sqrt5+20-16\sqrt5\sqrt{2(5+\sqrt5)}}{16} \\
&=11+4\sqrt5-(3+\sqrt5)\sqrt{2(5+\sqrt5)} \\
&=\sqrt{(11+4\sqrt5)^2}-\sqrt{(3+\sqrt5)^2(10+2\sqrt5)} \\
&=\sqrt{201+88\sqrt5}-\sqrt{(14+6\sqrt5)(10+2\sqrt5)} \\
&=\sqrt{201+88\sqrt5}-\sqrt{200+88\sqrt5}\end{align*}$$
 
Back
Top