Can You Solve the Trigonometric Equation for \(\tan^2 9^\circ\)?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The trigonometric equation for \(\tan^2 9^\circ\) is proven to be equal to \(\sqrt{201+88\sqrt{5}} - \sqrt{200+88\sqrt{5}}\). This conclusion was reached through a collaborative effort on the Math Help Boards, where members shared their solutions. Notable contributors to the discussion include greg1313, kaliprasad, and lfdahl, who provided correct solutions to the problem of the week (POTW).

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with square roots and simplification techniques
  • Knowledge of the tangent function and its properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of trigonometric identities involving tangent
  • Explore advanced techniques in simplifying square root expressions
  • Learn about the geometric interpretations of trigonometric functions
  • Investigate other trigonometric equations and their solutions
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in trigonometry and problem-solving techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that $$\tan^2 9^\circ=\sqrt{201+88\sqrt{5}}-\sqrt{200+88\sqrt{5}}$$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution::)

1. greg1313
2. kaliprasad
3. lfdahl

Solution from greg1313:
All arguments are in degrees.

$$\cos72=\sin18=\sqrt{\frac{1-\cos36}{2}}$$

$$\begin{align*}\frac{1-\cos36}{2}&=(2\cos^236-1)^2 \\
&=4\cos^436-4\cos^236+1 \\
&\Rightarrow8\cos^436-8\cos^236+\cos36+1=0 \\
&\Rightarrow(2\cos36-1)(\cos36+1)(4\cos^236-2\cos36-1)=0 \\
&\Rightarrow\cos36=\frac{1+\sqrt5}{4}\end{align*}$$

$$\begin{align*}\cos36=\frac{1+\sqrt5}{4}&=2\cos^218-1 \\
&=2(2\cos^29-1)^2-1 \\
&=8\cos^49-8\cos^29+1 \\
&\Rightarrow32\cos^49-32\cos^29+3-\sqrt5=0 \\
&\Rightarrow\cos^29=\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}\end{align*}$$

$$\begin{align*}\tan^29&=\sec^29-1 \\
&=\frac{1}{\cos^29}-1 \\
&=\frac{1}{\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}}-1 \\
&=\frac{\frac12-\sqrt{\frac{1}{32}(5+\sqrt5)}}{\frac12+\sqrt{\frac{1}{32}(5+\sqrt5)}} \\
&=\frac{4-\sqrt{2(5+\sqrt5)}}{4+\sqrt{2(5+\sqrt5)}} \\
&=\frac{26+2\sqrt5-8\sqrt{2(5+\sqrt5)}}{6-2\sqrt5} \\
&=\frac{156+12\sqrt5-48\sqrt{2(5+\sqrt5)}+52\sqrt5+20-16\sqrt5\sqrt{2(5+\sqrt5)}}{16} \\
&=11+4\sqrt5-(3+\sqrt5)\sqrt{2(5+\sqrt5)} \\
&=\sqrt{(11+4\sqrt5)^2}-\sqrt{(3+\sqrt5)^2(10+2\sqrt5)} \\
&=\sqrt{201+88\sqrt5}-\sqrt{(14+6\sqrt5)(10+2\sqrt5)} \\
&=\sqrt{201+88\sqrt5}-\sqrt{200+88\sqrt5}\end{align*}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K