MHB Can You Solve the Trigonometry Puzzle of the Week?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
AI Thread Summary
The trigonometry puzzle challenges participants to prove that the equation $\cot 13^\circ \cot 23^\circ \tan 31^\circ \tan 35^\circ \tan 41^\circ = \tan 75^\circ$ holds true. Participants are encouraged to refer to the Problem of the Week guidelines for submission procedures. Acknowledgment is given to kaliprasad for providing a correct solution to the problem. The discussion highlights the importance of collaborative problem-solving in mathematics. Engaging with such puzzles can enhance understanding of trigonometric identities and relationships.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that $\cot 13^\circ \cot 23^\circ \tan 31^\circ \tan 35^\circ \tan 41^\circ =\tan 75^\circ$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to kaliprasad for his correct solution!:)

Here's the suggested model solution:

First notice that the given equality can be rewritten as $(\tan 31^\circ \tan 41^\circ \tan 67^\circ \tan 77^\circ)\tan 35^\circ=\tan 75^\circ$(**)

Next, observe that $$\tan(5\cdot31^\circ)=\tan155^\circ=\tan(180^\circ-25^\circ)=-\tan25^\circ$$.

This works for $41^\circ,\,67^\circ$ and $77^\circ$.

Moreover, $$\tan(5\cdot(-5)^\circ)=-\tan25^\circ$$, so we get $\tan 5x=-\tan 25^\circ$ for $x\in \{-5,\,31,\,41,\,67,\,77\}$. Therefore, putting these $x$s into the identity $$\tan 5x=\frac{5\tan x-10\tan^3 x+\tan^5 x}{1-10\tan^2 x+5\tan^4 x}$$ and rearranging we get that $\tan x^\circ$ is a root of the polynomial $t^5+5\tan25^\circ t^4-10t^3-10\tan 25^\circ t^2+5t+\tan 25^\circ$ for $x\in \{-5,\,31,\,41,\,67,\,77\}$.

Hence by Viete's relations, we have

$\tan (-5^\circ)^\circ \tan31^\circ \tan 41^\circ \tan 67^\circ \tan 77^\circ =-\tan 25^\circ$, or equivalently,

$ \tan 31^\circ \tan 41^\circ \tan 67^\circ \tan 77^\circ=\tan 25^\circ\tan 85^\circ$

But we know that $\tan 35^\circ \tan 25^\circ \tan 85^\circ=\tan 75^\circ$ therefore we have proved that

$(\tan 31^\circ \tan 41^\circ \tan 67^\circ \tan 77^\circ)\tan 35^\circ=\tan 75^\circ$, i.e.

$\cot 13^\circ \cot 23^\circ \tan 31^\circ \tan 35^\circ \tan 41^\circ =\tan 75^\circ$
 
Back
Top