High School Can You Solve This Complex Mathematical Expression Without a Calculator?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion centers around evaluating a complex mathematical expression without a calculator, involving a series of products in both the numerator and denominator. Several members, including laura123, soroban, and kaliprasad, successfully provided different approaches to solve the problem. Each solution highlights unique methods and insights into simplifying the expression. The collaborative effort showcases the community's mathematical skills and problem-solving techniques. Ultimately, the thread emphasizes the value of diverse strategies in tackling complex mathematical challenges.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate, without the help of a calculator the following math expression:

$\dfrac{(2\cdot 5+2)(4\cdot 7+2)(6\cdot 9+2)(8\cdot 11+2)\cdots(1998\cdot 2001+2)}{(1\cdot 4+2)(3\cdot 6+2)(5\cdot 8+2)(7\cdot 10+2)\cdots(1997\cdot 2000+2)}$

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. laura123
2. soroban
3. kaliprasad
4. eddybob123

I'll show three solutions here because each of them adopted different approach to solve for the problem.

Here is laura123's solution:
$\displaystyle \begin{align*}\dfrac{(2\cdot 5+2)(4\cdot 7+2)(6\cdot 9+2)(8\cdot 11+2)\cdots(1998\cdot 2001+2)}{(1\cdot 4+2)(3\cdot 6+2)(5\cdot 8+2)(7\cdot 10+2)\cdots(1997\cdot 2000+2)}&=\prod_{k=1}^{999}\dfrac{2k(2k+3)+2}{(2k-1)(2k+2)+2}\\&=\displaystyle\prod_{k=1}^{999}\dfrac{4k^2+6k+2}{4k^2+4k-2k-2+2}\\&=\prod_{k=1}^{999}\dfrac{2(k+1)(2k+1)}{2k(2k+1)}\\&=\prod_{k=1}^{999}\dfrac{k+1}{k}\\&=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dots\cdot\dfrac{999}{998}\cdot\dfrac{1000}{999}\\&
=\dfrac{\cancel{2}}{1}\cdot\dfrac{\cancel{3}}{\cancel{2}}\cdot\dfrac{\cancel{4}}{\cancel{3}}\cdot\dots\cdot\dfrac{\cancel{999}}{\cancel{998}}\cdot\dfrac{1000}{\cancel{999}}\\&=1000 \end{align*}$.

Here is soroban's solution:
We have: $\;\dfrac{(12)(30)(56)(90) \cdots (3,\!1998,\!000)}{(6)(20)(42)(72) \cdots (3,\!994,\!002)} $

$\qquad =\;\dfrac{(3\cdot4)(5\cdot6)(7\cdot8)(9\cdot10) \cdots (1999\cdot 2000)}{(2\cdot3)(4\cdot5)(6\cdot7)(8\cdot9) \cdots (1998\cdot1999)}$

$\qquad =\;\dfrac{\dfrac{2000!}{2!}}{\dfrac{1999!}{1!}} \;=\;\dfrac{2000}{2} \;=\;1000$

Here's kaliprasad's solution:
We have $x(x+3) + 2 = (x+1)(x+2)$

So numerator = $3 * 4 * 5\cdots * 2000$

Denominator = $2 * 3 *4\cdots * 1999$

So ratio = $\dfrac{3 * 4 * 5\cdots * 2000}{2 * 3 *4\cdots * 1999}$ = 1000
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K