Can You Solve This Linear System of ODE with Initial Conditions?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The linear system of ordinary differential equations (ODEs) presented is defined by the equations \(\frac{dx}{dt} = 3x + 4y\) and \(\frac{dy}{dt} = 4x - 3y\) with initial conditions \(x(0) = 1\) and \(y(0) = 0\). Ackbach provided a complete solution to this problem, demonstrating the application of techniques for solving linear ODEs. Cbarker1 contributed a partially correct solution, highlighting the collaborative nature of problem-solving in mathematical forums.

PREREQUISITES
  • Understanding of linear ordinary differential equations (ODEs)
  • Familiarity with initial value problems
  • Knowledge of matrix exponentiation techniques
  • Basic skills in solving systems of equations
NEXT STEPS
  • Study the method of solving linear systems of ODEs using eigenvalues and eigenvectors
  • Learn about the Laplace transform and its application in solving ODEs
  • Explore numerical methods for solving ODEs, such as the Runge-Kutta method
  • Review the theory behind stability analysis of linear systems
USEFUL FOR

Mathematicians, engineering students, and anyone interested in advanced calculus and differential equations will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Solve the linear system of ODE

\[\begin{align}
\frac{dx}{dt} = 3x + 4y\\
\frac{dy}{dt} = 4x - 3y
\end{align}\]

with initial conditions $x(0) = 1$, $y(0) = 0$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Ackbach. Honorable mention goes to Cbarker1 for a partially correct solution. You can read Ackbach's solution below.
Let
$$A=\left[\begin{matrix}3&4\\4&-3\end{matrix}\right]\quad\text{and}\quad\mathbf{x}=\left[\begin{matrix}x\\y\end{matrix}\right]
\quad\text{and}\quad\mathbf{x}_0=\left[\begin{matrix}1\\0\end{matrix}\right].$$
Then the system is $\dot{\mathbf{x}}=A\mathbf{x}.$ The solution is generally $\mathbf{x}=e^{At}\mathbf{x}_0.$ So we must calculate $e^{At}.$ There are many ways to exponentiate a matrix, but the usual way, if possible, is to diagonalize the matrix $A$ as follows:
\begin{align*}
\det(A-\lambda I)&=0\\
\left|\begin{matrix}3-\lambda&4\\4&-3-\lambda\end{matrix}\right|&=0 \\
(3-\lambda)(-3-\lambda)-16&=0 \\
\lambda^2-25&=0 \\
(\lambda-5)(\lambda+5)&=0 \\
\lambda&=\pm 5.
\end{align*}
Now for the corresponding eigenvectors:
\begin{align*}
\left[\begin{matrix}3-5&4\\4&-3-5\end{matrix}\right]\chi_5&=0 \\
\left[\begin{matrix}-2&4\\4&-8\end{matrix}\right]\chi_5&=0 \\
\left[\begin{matrix}-1&2\\0&0\end{matrix}\right]\chi_5&=0 \\
\chi_5&=s\left[\begin{matrix}2\\1\end{matrix}\right] \\
&=\frac{1}{\sqrt{5}}\left[\begin{matrix}2\\1\end{matrix}\right] \quad\text{(normalized);}\\
\left[\begin{matrix}3+5&4\\4&-3+5\end{matrix}\right]\chi_{-5}&=0 \\
\left[\begin{matrix}8&4\\4&2\end{matrix}\right]\chi_{-5}&=0 \\
\left[\begin{matrix}2&1\\0&0\end{matrix}\right]\chi_{-5}&=0 \\
\chi_{-5}&=s\left[\begin{matrix}1\\-2\end{matrix}\right] \\
&=\frac{1}{\sqrt{5}}\left[\begin{matrix}1\\-2\end{matrix}\right].
\end{align*}
Note that $\chi_5\cdot\chi_{-5}=0,$ and $\chi_5\cdot\chi_5=1,$ and $\chi_{-5}\cdot\chi_{-5}=1.$ So this is an orthonormal set, and since we found two such vectors, the matrix is diagonalizable. We have
$$A=\frac{1}{5}\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}5&0 \\0 &-5 \end{matrix}\right]\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}10&5 \\-5 &10 \end{matrix}\right]
=\frac15\left[\begin{matrix}15&20 \\20 &-15 \end{matrix}\right]=A, $$
as required. We let
$$D=\left[\begin{matrix}5&0 \\0 &-5 \end{matrix}\right],\quad Q=\frac{1}{\sqrt{5}}\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right],$$
so that $A=QDQ^{\dagger};$ since $Q^{\dagger}=Q,$ we can just write $A=QDQ.$ It follows that
\begin{align*}e^{At}&=\sum_{n=0}^{\infty}\frac{(At)^n}{n!}\\
&=\sum_{n=0}^{\infty}\frac{A^nt^n}{n!}\\
&=\sum_{n=0}^{\infty}\frac{(QDQ)^nt^n}{n!}\\
&=Q \left[\sum_{n=0}^{\infty}\frac{D^nt^n}{n!}\right]Q\\
&=Qe^{Dt}Q\\
&=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}e^{5t}&0 \\0 &e^{-5t} \end{matrix}\right]\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\\
&=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}2e^{5t}&e^{5t} \\e^{-5t} &-2e^{-5t} \end{matrix}\right]\\
&=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}&2e^{5t}-2e^{-5t} \\2e^{5t}-2e^{-5t} &e^{5t}+4e^{-5t} \end{matrix}\right].
\end{align*}
Finally, we compute
$$e^{At}\mathbf{x}_0=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}&2e^{5t}-2e^{-5t} \\2e^{5t}-2e^{-5t} &e^{5t}+4e^{-5t} \end{matrix}\right]
\left[\begin{matrix}1\\0\end{matrix}\right]=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}\\2e^{5t}-2e^{-5t}\end{matrix}\right]=\mathbf{x}.$$
Just as a note, we can write this with hyperbolic trig functions as follows:
$$\mathbf{x}=\left[\begin{matrix}\cosh(5t)+3\sinh(5t)/5 \\ 4\sinh(5t)/5\end{matrix}\right].$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K