MHB Can You Solve This Linear System of ODE with Initial Conditions?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion focuses on solving a linear system of ordinary differential equations (ODE) with given initial conditions. The equations are \(\frac{dx}{dt} = 3x + 4y\) and \(\frac{dy}{dt} = 4x - 3y\), with initial values \(x(0) = 1\) and \(y(0) = 0\). Ackbach provided a correct solution to the problem, while Cbarker1 received an honorable mention for a partially correct attempt. Participants are encouraged to refer to the guidelines for submitting solutions. The thread highlights the collaborative effort in solving mathematical problems within the community.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Solve the linear system of ODE

\[\begin{align}
\frac{dx}{dt} = 3x + 4y\\
\frac{dy}{dt} = 4x - 3y
\end{align}\]

with initial conditions $x(0) = 1$, $y(0) = 0$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Ackbach. Honorable mention goes to Cbarker1 for a partially correct solution. You can read Ackbach's solution below.
Let
$$A=\left[\begin{matrix}3&4\\4&-3\end{matrix}\right]\quad\text{and}\quad\mathbf{x}=\left[\begin{matrix}x\\y\end{matrix}\right]
\quad\text{and}\quad\mathbf{x}_0=\left[\begin{matrix}1\\0\end{matrix}\right].$$
Then the system is $\dot{\mathbf{x}}=A\mathbf{x}.$ The solution is generally $\mathbf{x}=e^{At}\mathbf{x}_0.$ So we must calculate $e^{At}.$ There are many ways to exponentiate a matrix, but the usual way, if possible, is to diagonalize the matrix $A$ as follows:
\begin{align*}
\det(A-\lambda I)&=0\\
\left|\begin{matrix}3-\lambda&4\\4&-3-\lambda\end{matrix}\right|&=0 \\
(3-\lambda)(-3-\lambda)-16&=0 \\
\lambda^2-25&=0 \\
(\lambda-5)(\lambda+5)&=0 \\
\lambda&=\pm 5.
\end{align*}
Now for the corresponding eigenvectors:
\begin{align*}
\left[\begin{matrix}3-5&4\\4&-3-5\end{matrix}\right]\chi_5&=0 \\
\left[\begin{matrix}-2&4\\4&-8\end{matrix}\right]\chi_5&=0 \\
\left[\begin{matrix}-1&2\\0&0\end{matrix}\right]\chi_5&=0 \\
\chi_5&=s\left[\begin{matrix}2\\1\end{matrix}\right] \\
&=\frac{1}{\sqrt{5}}\left[\begin{matrix}2\\1\end{matrix}\right] \quad\text{(normalized);}\\
\left[\begin{matrix}3+5&4\\4&-3+5\end{matrix}\right]\chi_{-5}&=0 \\
\left[\begin{matrix}8&4\\4&2\end{matrix}\right]\chi_{-5}&=0 \\
\left[\begin{matrix}2&1\\0&0\end{matrix}\right]\chi_{-5}&=0 \\
\chi_{-5}&=s\left[\begin{matrix}1\\-2\end{matrix}\right] \\
&=\frac{1}{\sqrt{5}}\left[\begin{matrix}1\\-2\end{matrix}\right].
\end{align*}
Note that $\chi_5\cdot\chi_{-5}=0,$ and $\chi_5\cdot\chi_5=1,$ and $\chi_{-5}\cdot\chi_{-5}=1.$ So this is an orthonormal set, and since we found two such vectors, the matrix is diagonalizable. We have
$$A=\frac{1}{5}\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}5&0 \\0 &-5 \end{matrix}\right]\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}10&5 \\-5 &10 \end{matrix}\right]
=\frac15\left[\begin{matrix}15&20 \\20 &-15 \end{matrix}\right]=A, $$
as required. We let
$$D=\left[\begin{matrix}5&0 \\0 &-5 \end{matrix}\right],\quad Q=\frac{1}{\sqrt{5}}\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right],$$
so that $A=QDQ^{\dagger};$ since $Q^{\dagger}=Q,$ we can just write $A=QDQ.$ It follows that
\begin{align*}e^{At}&=\sum_{n=0}^{\infty}\frac{(At)^n}{n!}\\
&=\sum_{n=0}^{\infty}\frac{A^nt^n}{n!}\\
&=\sum_{n=0}^{\infty}\frac{(QDQ)^nt^n}{n!}\\
&=Q \left[\sum_{n=0}^{\infty}\frac{D^nt^n}{n!}\right]Q\\
&=Qe^{Dt}Q\\
&=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}e^{5t}&0 \\0 &e^{-5t} \end{matrix}\right]\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\\
&=\frac15\left[\begin{matrix}2&1 \\1 &-2 \end{matrix}\right]\left[\begin{matrix}2e^{5t}&e^{5t} \\e^{-5t} &-2e^{-5t} \end{matrix}\right]\\
&=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}&2e^{5t}-2e^{-5t} \\2e^{5t}-2e^{-5t} &e^{5t}+4e^{-5t} \end{matrix}\right].
\end{align*}
Finally, we compute
$$e^{At}\mathbf{x}_0=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}&2e^{5t}-2e^{-5t} \\2e^{5t}-2e^{-5t} &e^{5t}+4e^{-5t} \end{matrix}\right]
\left[\begin{matrix}1\\0\end{matrix}\right]=\frac15\left[\begin{matrix}4e^{5t}+e^{-5t}\\2e^{5t}-2e^{-5t}\end{matrix}\right]=\mathbf{x}.$$
Just as a note, we can write this with hyperbolic trig functions as follows:
$$\mathbf{x}=\left[\begin{matrix}\cosh(5t)+3\sinh(5t)/5 \\ 4\sinh(5t)/5\end{matrix}\right].$$