Can You Tackle Our Latest Math Challenge on Limits?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The discussion focuses on evaluating the limit of a complex mathematical expression as \( x \) approaches 2. The expression involves sixth roots, cube roots, and square roots, specifically: $$\lim_{x \rightarrow 2} \left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}} \times \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}} \right).$$ Participants are encouraged to follow the Problem of the Week (POTW) guidelines for submission and solutions. The previous week's problem remains unanswered, highlighting a need for engagement.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with root functions (sixth, cube, and square roots)
  • Ability to manipulate algebraic expressions
  • Knowledge of the Problem of the Week (POTW) format and guidelines
NEXT STEPS
  • Study techniques for evaluating limits involving roots and polynomials
  • Learn about L'Hôpital's Rule for indeterminate forms
  • Explore the properties of continuity and differentiability in calculus
  • Review previous POTW problems and solutions for practice
USEFUL FOR

Students, educators, and mathematics enthusiasts looking to enhance their skills in calculus, particularly in evaluating limits and engaging with mathematical challenges.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate the following limit:

$$\large \lim_{x \rightarrow 2} \left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}} \times \frac{\sqrt[3]{x^3-\sqrt {x^2+60}}}{\sqrt{x^2-\sqrt[3] {x^2+60}}} \right)$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem. :(

You can find my solution below:

First, note that $6x^4-12x^3-x+2$ can be factorized as $6(2)^4-12(2)^3-(2)+2=96-96-2+2=0$, factorize it using the long polynomial division by the factor $x-2$, we get $6x^4-12x^3-x+2=(x-2)(6x^3-1)$.

So evaluating $$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$ is equivalent in evaluating $$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$.

If we could think of another polynomial function of $f$, and multiply the top and bottom of the argument rational function inside the sixth root by the function of $f$, which for certain the function of $f$ also has a factor of $x-2$, then we could cross out the $x-2$ from top and bottom. But this function of $f$ must fulfill another criterion, it has to be closely related to $\sqrt[3]{x^3-\sqrt{x^2+60}}$ and $\sqrt{x^2-\sqrt[3]{x^2+60}}$:

$$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

It's tempted to try out the option $f(x)=x^6-x^2-60$ since $f(2)=2^6-2^2-60=64-4-60=0$, and $f(x)=(x-2)(x+2)(x^4+4x^2+15)$

$$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{\cancel{(x-2)}(6x^3-1)}{x+2}\cdot \frac{x^6-x^2-60}{\cancel{(x-2)}(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{x+2}\cdot \frac{x^6-x^2-60}{(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \sqrt[6]{x^6-x^2-60}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^6-x^2-60}}{\sqrt[3]{x^6-x^2-60}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\,\,\small\text{as $\frac{1}{6}=\frac{1}{2}-\frac{1}{3}$}$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2)^3-\sqrt[3]{(x^2+60)^3}}}{\sqrt[3]{(x^3)^2-\sqrt{(x^2+60)^2}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$\small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2-\sqrt[3]{x^2+60})}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3-\sqrt{x^2+60}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$\small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\cancel{\sqrt{(x^2-\sqrt[3]{x^2+60})}}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}}{\cancel{\sqrt{x^2-\sqrt[3]{x^2+60}}}}\right)$$

$$= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)$$

Now, we can safely evaluate the limit by plugging in $x=2$ into the expression and get:

$$\small \begin{align*}\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)&=\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)\\&=\sqrt[6]{\frac{6(2)^3-1}{(2+2)^2(2^4+4(2)^2+15)}}\cdot \frac{\sqrt{2^4+2^2\sqrt[3]{2^2+60}+\sqrt[3]{(2^2+60)^2}}}{\sqrt[3]{2^3+\sqrt{2^2+60}}}\\&=\sqrt[6]{\frac{47}{(4)^2(47)}}\cdot \frac{\sqrt{16+2^2(4)+(4)^2}}{\sqrt[3]{8+8}}\\&=\sqrt[6]{\frac{1}{4^2}}\cdot \frac{\sqrt{48}}{\sqrt[3]{16}}\\&=\frac{1}{2^{\frac{4}{6}}}\cdot \frac{4\sqrt{3}}{2^{\frac{4}{3}}}\\&=\frac{4\sqrt{3}}{4}\\&=\sqrt{3}\end{align*}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K