MHB Can You Tackle Our Latest Math Challenge on Limits?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2016
AI Thread Summary
The discussion presents a math challenge involving the evaluation of a limit as x approaches 2. The limit expression includes a combination of sixth roots, cube roots, and square roots, requiring careful manipulation to solve. Participants are reminded to follow the guidelines for submitting solutions and to check previous problems for context. There is a note that last week's problem went unanswered, highlighting the need for engagement. The thread aims to encourage participation in solving the current limit challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate the following limit:

$$\large \lim_{x \rightarrow 2} \left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}} \times \frac{\sqrt[3]{x^3-\sqrt {x^2+60}}}{\sqrt{x^2-\sqrt[3] {x^2+60}}} \right)$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered last week's problem. :(

You can find my solution below:

First, note that $6x^4-12x^3-x+2$ can be factorized as $6(2)^4-12(2)^3-(2)+2=96-96-2+2=0$, factorize it using the long polynomial division by the factor $x-2$, we get $6x^4-12x^3-x+2=(x-2)(6x^3-1)$.

So evaluating $$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$ is equivalent in evaluating $$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$.

If we could think of another polynomial function of $f$, and multiply the top and bottom of the argument rational function inside the sixth root by the function of $f$, which for certain the function of $f$ also has a factor of $x-2$, then we could cross out the $x-2$ from top and bottom. But this function of $f$ must fulfill another criterion, it has to be closely related to $\sqrt[3]{x^3-\sqrt{x^2+60}}$ and $\sqrt{x^2-\sqrt[3]{x^2+60}}$:

$$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

It's tempted to try out the option $f(x)=x^6-x^2-60$ since $f(2)=2^6-2^2-60=64-4-60=0$, and $f(x)=(x-2)(x+2)(x^4+4x^2+15)$

$$\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{(x-2)(6x^3-1)}{x+2}\cdot \frac{f(x)}{f(x)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{\cancel{(x-2)}(6x^3-1)}{x+2}\cdot \frac{x^6-x^2-60}{\cancel{(x-2)}(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{x+2}\cdot \frac{x^6-x^2-60}{(x+2)(x^4+4x^2+15)}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \sqrt[6]{x^6-x^2-60}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^6-x^2-60}}{\sqrt[3]{x^6-x^2-60}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)\,\,\small\text{as $\frac{1}{6}=\frac{1}{2}-\frac{1}{3}$}$$

$$=\large \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2)^3-\sqrt[3]{(x^2+60)^3}}}{\sqrt[3]{(x^3)^2-\sqrt{(x^2+60)^2}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$\small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{(x^2-\sqrt[3]{x^2+60})}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3-\sqrt{x^2+60}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)$$

$$\small= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\cancel{\sqrt{(x^2-\sqrt[3]{x^2+60})}}\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}\sqrt[3]{x^3+\sqrt{x^2+60}}}\cdot \frac{\cancel{\sqrt[3]{x^3-\sqrt{x^2+60}}}}{\cancel{\sqrt{x^2-\sqrt[3]{x^2+60}}}}\right)$$

$$= \lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)$$

Now, we can safely evaluate the limit by plugging in $x=2$ into the expression and get:

$$\small \begin{align*}\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^4-12x^3-x+2}{x+2}}\cdot \frac{\sqrt[3]{x^3-\sqrt{x^2+60}}}{\sqrt{x^2-\sqrt[3]{x^2+60}}}\right)&=\lim_{{x}\to{2}}\left(\sqrt[6]{\frac{6x^3-1}{(x+2)^2(x^4+4x^2+15)}}\cdot \frac{\sqrt{x^4+x^2\sqrt[3]{x^2+60}+\sqrt[3]{(x^2+60)^2}}}{\sqrt[3]{x^3+\sqrt{x^2+60}}}\right)\\&=\sqrt[6]{\frac{6(2)^3-1}{(2+2)^2(2^4+4(2)^2+15)}}\cdot \frac{\sqrt{2^4+2^2\sqrt[3]{2^2+60}+\sqrt[3]{(2^2+60)^2}}}{\sqrt[3]{2^3+\sqrt{2^2+60}}}\\&=\sqrt[6]{\frac{47}{(4)^2(47)}}\cdot \frac{\sqrt{16+2^2(4)+(4)^2}}{\sqrt[3]{8+8}}\\&=\sqrt[6]{\frac{1}{4^2}}\cdot \frac{\sqrt{48}}{\sqrt[3]{16}}\\&=\frac{1}{2^{\frac{4}{6}}}\cdot \frac{4\sqrt{3}}{2^{\frac{4}{3}}}\\&=\frac{4\sqrt{3}}{4}\\&=\sqrt{3}\end{align*}$$
 
Back
Top