Can You Tackle This Advanced Series Summation Challenge?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on evaluating the infinite series $$\sum_{n = 0}^\infty \frac{(-1)^n}{2n+1} \sech\left[\frac{(2n+1)\pi}{2}\right]$$. No participants provided solutions, indicating a potential challenge in tackling this advanced mathematical problem. The series involves alternating terms and the hyperbolic secant function, which complicates direct evaluation. The absence of responses suggests that further exploration of series convergence and hyperbolic functions may be necessary for a comprehensive understanding.

PREREQUISITES
  • Understanding of infinite series and convergence criteria
  • Familiarity with hyperbolic functions, specifically the hyperbolic secant function
  • Knowledge of alternating series and their properties
  • Basic proficiency in mathematical notation and summation techniques
NEXT STEPS
  • Research convergence tests for alternating series
  • Explore properties and applications of the hyperbolic secant function
  • Learn techniques for evaluating infinite series involving hyperbolic functions
  • Investigate advanced summation techniques and transformations
USEFUL FOR

Mathematicians, students in advanced calculus or analysis courses, and anyone interested in series evaluation and hyperbolic functions.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Evaluate the sum of the series

$$\sum_{n = 0}^\infty \frac{(-1)^n}{2n+1} \sech\left[\frac{(2n+1)\pi}{2}\right]$$

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.

If $S$ is the sum, then $$S = \sum_{n = -\infty}^0 \dfrac{(-1)^n}{-2n+1} \sech\left[\frac{(-2n+1)\pi}{2}\right] = \sum_{n = -\infty}^{-1} \frac{(-1)^n}{2n+1} \sech\left[\frac{(2n+1)\pi}{2}\right]$$ so that $$2S = \sum_{n =-\infty}^\infty \frac{(-1)^n}{2n+1}\sech\left[\frac{(2n+1)\pi}{2}\right] = \frac{1}{2}\sum_{n = -\infty}^\infty \frac{(-1)^n}{n + \frac{1}{2}}\sech\left[\left(n + \frac{1}{2}\right)\pi\right]$$ The function $f(z) = \dfrac{\sech \pi z}{z}$ has $z f(z) \to 0$ as $\lvert z\rvert \to \infty$, so $2S$ is equal to one-half the sum of the residues of $f(z)\pi\sec(\pi z)$ at the singularities of $f$. Now $f$ has simple poles at $z = 0$ and at $z = -i\dfrac{2n+1}{2}$ where $n$ ranges over the integers. The residues of $f(z)\pi \sec(\pi z)$ at $0$ and $-i \dfrac{2n+1}{2}$, respectively, are $\pi$ and $-\dfrac{(-1)^n}{n + \frac{1}{2}}\sech\left[\left(n + \frac{1}{2}\right)\pi\right]$. Therefore, $2S = \dfrac{\pi}{2} - 2S$, or $S = \dfrac{\pi}{8}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K