Cardinality of an interval of rationals

Click For Summary
The cardinality of the set of rational numbers between any two rational numbers q1 and q2 is indeed the same as the cardinality of the set of all rational numbers, Q. This holds true regardless of whether q1 and q2 are rational or irrational. The discussion clarifies that the interval (q1, q2) has the cardinality of the real numbers, R, while the set of non-integer rationals within that interval also retains the cardinality of Q. A proposed function is introduced to establish a one-to-one correspondence between the non-integer rationals in the interval and Q, although further clarification on its effectiveness is sought. Overall, the conversation centers on understanding and proving the cardinality relationships between these sets.
kindlychung
Messages
10
Reaction score
0
For any two rational numbers q1<q2, card ((q1,q2) cap Q) = card Q, right?
How to prove it, if it's true?
 
Last edited:
Physics news on Phys.org
Please define your terms. The cardinality of the set of all rationals between any two given numbers, whether rational or irrational is the same as the cardinality of the rationals, yes. The cardinality of interval (q1, q2) where q1 and q2 are rational numbers is the cardinality of R because that is an interval of real numbers.

I don't know what the "I" in "(q1, q2)-I". The set of integers? So that "(q1, q2)- I" is the set of all numbers that are NOT integers between q1 and q2? If so then the answer is as before: If (q1, q2)- I is the set of all non-integer rational numbers between q1 and q2, the cardinality of that set is the cardinality of Q. If (q1, q2)- I is the set of all non-integer real numbers between q1 and q2, the cardinality of that set is the cardinality of R, the set of all real numbers. That is because the set of integers between any two given rational numbers is finite and so does not affect the cardinality of any infinite set.
 
I have edited the original post. Please see.
((q1, q2) cap Q) is the set of all non-integer rational numbers between q1 and q2. By intuition I know it has the same cardinality as Q, yet I don't know how to build a 1-1 correspondence between it and Q, please help.
 
Okay, I think I got it.

Let m, n be any positive integers, any positive element q of Q can be written as m/n, and any negative element q of Q can be written as -m/n.

Let's define function f as follows:
f(q) = \frac{q_{1}+q_{2}}{2} + \frac{q_{2}-q_{1}}{2}\cdot\frac{m}{m+n} (q&gt;0)
f(q) = \frac{q_{1}+q_{2}}{2} - \frac{q_{2}-q_{1}}{2}\cdot\frac{m}{m+n} (q&lt;0)
f(q)=0 (q=0)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
2K
Replies
6
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K