Challenge Problem #6: Prove tan 18°=√(1-2/√5)

  • Context: MHB 
  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge Tan
Click For Summary

Discussion Overview

The discussion centers around proving the identity $$\tan 18^\circ = \sqrt{1 - \frac{2}{\sqrt{5}}$$ through various methods, including geometric and analytic approaches. Participants explore the mathematical reasoning behind this trigonometric identity without the use of computational tools.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant asserts the identity is intuitively obvious without providing a detailed proof.
  • Another participant presents a geometric proof involving a regular pentagon and the properties of its diagonals, leading to the conclusion that $$\tan 18^\circ = \sqrt{1 - \frac{2}{\sqrt{5}}$$ through a series of geometric relationships and the application of the Pythagorean theorem.
  • A third participant expresses appreciation for the geometric solution and mentions their own approach is entirely analytic, though details of this analytic solution are not provided.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the preferred method of proof, as one favors a geometric approach while another indicates they have a different analytic solution. The discussion remains open-ended with multiple perspectives on how to prove the identity.

Contextual Notes

The discussion includes various assumptions about the properties of geometric figures and trigonometric identities, which may not be universally accepted without further elaboration or proof.

Olinguito
Messages
239
Reaction score
0
Prove that
$$\tan18^\circ\ =\ \sqrt{1-\dfrac2{\sqrt5}}.$$
No calculator, computer program, Excel, Google, or any other kind of cheating tool allowed. (Smirk)

Have fun!
 
Last edited:
Mathematics news on Phys.org
It's true. Proof: It's intuitively obvious.

-Dan
 
Olinguito said:
Prove that
$$\tan18^\circ\ =\ \sqrt{1-\dfrac2{\sqrt5}}.$$
No calculator, computer program, Excel, Google, or any other kind of cheating tool allowed. (Smirk)

[sp]This comes from the geometry of the pentagon.
[TIKZ][scale=0.75]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=below: $R$] (R) at (4.755,-4.045) ;
\coordinate [label=above right: $Q$] (Q) at (0.45,0.6) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) -- (P) -- (B) -- (D) -- (R) -- (E) ;
\draw (C) -- (E) -- node[above right] {$d$}(B) ;
\draw (-3.4,-3.75) node {$72^\circ$} ;[/TIKZ]
If $ABCDE$ is a regular pentagon with side $1$ then it is a standard result that the diagonals have length $d = \frac12(\sqrt5+1)$, the golden ratio. A quick way to see that is to notice that in the above diagram the triangles $CQD$ and $BQE$ are similar (with angles $36^\circ$ and $108^\circ$), from which $QD = \frac1d$. Then $BD = BQ+QD$, so that $d = 1 + \frac1d$, a quadratic equation whose positive root is the golden ratio.

If $BP$ and $DR$ are the perpendiculars from $B$ and $D$ to $AE$ then $d = PR = PA + AE + ER = 1+2PA$, from which $PA = \frac12(d-1) = \frac14(\sqrt5-1)$.

By Pythagoras in the triangle $BPA$, $BP^2 = 1 - \frac1{16}(\sqrt5-1)^2 = \frac18(5+\sqrt5)$. Therefore $$\frac{PA^2}{BP^2} = \frac{\frac18(3-\sqrt5)}{\frac18(5+\sqrt5)} = \frac{(3-\sqrt5)(5-\sqrt5)}{(5+\sqrt5)(5-\sqrt5)} = \frac{20-8\sqrt5}{20} = 1 - \frac2{\sqrt5}.$$ But $\frac{PA}{BP} = \tan 18^\circ$, and therefore $\tan 18^\circ = \sqrt{1 - \frac2{\sqrt5}}.$

[/sp]​
 
Last edited:
Thanks, Opalg! It’s a neat geometric solution. (Clapping)

My own solution is entirely analytic. (Nerd)

Consider $\tan54^\circ$. On the one hand:
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}.$$
On the other hand:
$$\tan54^\circ\ =\ \tan3(18)^\circ\ =\ \frac{3\tan18^\circ-\tan^318^\circ}{1-3\tan^218^\circ}$$
using the triple-angle formula for tangent. Hence:
$$\frac{1-\tan^218^\circ}{2\tan18^\circ}\ =\ \frac{3\tan18^\circ-\tan^318^\circ}{1-3\tan^218^\circ}$$
$\implies\ 1-4\tan^218^\circ+3\tan^418^\circ\ =\ 6\tan^218^\circ-2\tan^418^\circ$

$\implies\ 5\tan^418^\circ-10\tan^218^\circ+1\ =\ 0$

$\implies$ $\tan^218^\circ$ is a root of the quadratic equation $f(x)=5x^2-10x+1=0$

$\implies\ \tan^218^\circ=\dfrac{10\pm\sqrt{80}}{10}=1\pm\dfrac2{\sqrt5}.$

But $f(1)=-4<0$ and $f(2)=1>0$ showing that there is a root between $1$ and $2$. This root can’t be $\tan^218^\circ$ as $0<\tan18^\circ<1$. It follows that $\tan^218^\circ$ is the lesser of the two possible roots, i.e.
$$\tan^218^\circ\ =\ 1-\frac2{\sqrt5}$$
and we are done. (Cool) (The other root turns out to be $\tan^254^\circ$.)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K