Challenge Problem #6: Prove tan 18°=√(1-2/√5)

  • Context: MHB 
  • Thread starter Thread starter Olinguito
  • Start date Start date
  • Tags Tags
    Challenge Tan
Click For Summary
SUMMARY

The discussion centers on the proof that $$\tan 18^\circ = \sqrt{1 - \frac{2}{\sqrt{5}}}$$ using geometric principles derived from the properties of a regular pentagon. The proof involves calculating the lengths of the diagonals and applying the Pythagorean theorem to establish the relationship between the tangent of the angle and the derived expression. The solution highlights the connection between geometry and trigonometric identities, confirming the equality through rigorous mathematical reasoning.

PREREQUISITES
  • Understanding of basic trigonometric functions and identities
  • Familiarity with the properties of regular polygons, specifically pentagons
  • Knowledge of the Pythagorean theorem
  • Ability to manipulate algebraic expressions and solve quadratic equations
NEXT STEPS
  • Study the geometric properties of regular pentagons and their diagonals
  • Learn about the derivation of trigonometric identities from geometric principles
  • Explore the relationship between the golden ratio and trigonometric functions
  • Investigate other angles and their tangent values using similar geometric proofs
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry who seek to deepen their understanding of the relationship between geometry and trigonometric identities.

Olinguito
Messages
239
Reaction score
0
Prove that
$$\tan18^\circ\ =\ \sqrt{1-\dfrac2{\sqrt5}}.$$
No calculator, computer program, Excel, Google, or any other kind of cheating tool allowed. (Smirk)

Have fun!
 
Last edited:
Mathematics news on Phys.org
It's true. Proof: It's intuitively obvious.

-Dan
 
Olinguito said:
Prove that
$$\tan18^\circ\ =\ \sqrt{1-\dfrac2{\sqrt5}}.$$
No calculator, computer program, Excel, Google, or any other kind of cheating tool allowed. (Smirk)

[sp]This comes from the geometry of the pentagon.
[TIKZ][scale=0.75]
\coordinate [label=above: $C$] (C) at (90:5cm) ;
\coordinate [label=above right: $D$] (D) at (18:5cm) ;
\coordinate [label=above left: $B$] (B) at (162:5cm) ;
\coordinate [label=below: $A$] (A) at (234:5cm) ;
\coordinate [label=below: $E$] (E) at (306:5cm) ;
\coordinate [label=below: $P$] (P) at (-4.755,-4.045) ;
\coordinate [label=below: $R$] (R) at (4.755,-4.045) ;
\coordinate [label=above right: $Q$] (Q) at (0.45,0.6) ;
\draw (A) -- node
{$1$} (B) -- node[above left] {$1$} (C) -- node[above right] {$1$} (D) -- node
{$1$} (E) -- node[below] {$1$} (A) -- (P) -- (B) -- (D) -- (R) -- (E) ;
\draw (C) -- (E) -- node[above right] {$d$}(B) ;
\draw (-3.4,-3.75) node {$72^\circ$} ;[/TIKZ]
If $ABCDE$ is a regular pentagon with side $1$ then it is a standard result that the diagonals have length $d = \frac12(\sqrt5+1)$, the golden ratio. A quick way to see that is to notice that in the above diagram the triangles $CQD$ and $BQE$ are similar (with angles $36^\circ$ and $108^\circ$), from which $QD = \frac1d$. Then $BD = BQ+QD$, so that $d = 1 + \frac1d$, a quadratic equation whose positive root is the golden ratio.

If $BP$ and $DR$ are the perpendiculars from $B$ and $D$ to $AE$ then $d = PR = PA + AE + ER = 1+2PA$, from which $PA = \frac12(d-1) = \frac14(\sqrt5-1)$.

By Pythagoras in the triangle $BPA$, $BP^2 = 1 - \frac1{16}(\sqrt5-1)^2 = \frac18(5+\sqrt5)$. Therefore $$\frac{PA^2}{BP^2} = \frac{\frac18(3-\sqrt5)}{\frac18(5+\sqrt5)} = \frac{(3-\sqrt5)(5-\sqrt5)}{(5+\sqrt5)(5-\sqrt5)} = \frac{20-8\sqrt5}{20} = 1 - \frac2{\sqrt5}.$$ But $\frac{PA}{BP} = \tan 18^\circ$, and therefore $\tan 18^\circ = \sqrt{1 - \frac2{\sqrt5}}.$

[/sp]​
 
Last edited:
Thanks, Opalg! It’s a neat geometric solution. (Clapping)

My own solution is entirely analytic. (Nerd)

Consider $\tan54^\circ$. On the one hand:
$$\tan54^\circ\ =\ \frac1{\tan36^\circ}\ =\ \frac{1-\tan^218^\circ}{2\tan18^\circ}.$$
On the other hand:
$$\tan54^\circ\ =\ \tan3(18)^\circ\ =\ \frac{3\tan18^\circ-\tan^318^\circ}{1-3\tan^218^\circ}$$
using the triple-angle formula for tangent. Hence:
$$\frac{1-\tan^218^\circ}{2\tan18^\circ}\ =\ \frac{3\tan18^\circ-\tan^318^\circ}{1-3\tan^218^\circ}$$
$\implies\ 1-4\tan^218^\circ+3\tan^418^\circ\ =\ 6\tan^218^\circ-2\tan^418^\circ$

$\implies\ 5\tan^418^\circ-10\tan^218^\circ+1\ =\ 0$

$\implies$ $\tan^218^\circ$ is a root of the quadratic equation $f(x)=5x^2-10x+1=0$

$\implies\ \tan^218^\circ=\dfrac{10\pm\sqrt{80}}{10}=1\pm\dfrac2{\sqrt5}.$

But $f(1)=-4<0$ and $f(2)=1>0$ showing that there is a root between $1$ and $2$. This root can’t be $\tan^218^\circ$ as $0<\tan18^\circ<1$. It follows that $\tan^218^\circ$ is the lesser of the two possible roots, i.e.
$$\tan^218^\circ\ =\ 1-\frac2{\sqrt5}$$
and we are done. (Cool) (The other root turns out to be $\tan^254^\circ$.)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K