MHB Chances of Student Getting Hot Chocolate at Dan's Office Hours

AI Thread Summary
The discussion revolves around calculating the probability of a student who attended Dan's office hours getting hot chocolate at a coffee shop. It is established that 20% of the people in the shop during office hours are students, with 30% of those students attending for office hours. Out of the students, 20% received hot chocolate, while 50% got nothing. In the larger group of non-students, 10% also got hot chocolate. The final probability that a person who got hot chocolate was a student attending office hours is calculated to be 1/3.
f666
Messages
2
Reaction score
0
30% of the students who came into a coffee shop talk to Dan's for his office hours. 20% of them got hot chocolate. 50% of them got nothing. Only 20% of the people in the shop during those two hours were students coming for Dan's office hours. Out of this larger group, 65% got coffee, 10% got hot chocolate, and 25% got nothing. What are the chances that someone in the shop during those two hours was a student who came in for office hours given that they got hot chocolate?
 
Mathematics news on Phys.org
This is seriously confusing! When you say "Out of this larger group" what "larger group" do you mean? Since you had just said " Only 20% of the people in the shop during those two hours were students coming for Dan's office hours." I presume that the "larger group" are those that are not "students coming for Dan's office hours". But you had already said "30% of the students who came into a coffee shop talk to Dan's for his office hours". So "students" are different from the general people who come to the coffee shop?

Imagine 1000 people in the coffee shop. 20% of them, 200, are "students coming for Dan's office hours" and the other 80%, 800, are not.

Of the 200 'students coming for Dan's office hours", 20%, 0.2(200)= 40 students, got hot chocolate, 50%, 0.5(200)= 100 students, got nothing, and I presume that the remaining 60 students got coffee.

Of the 800 people what are NOT "students coming from Dan's office hours", 65%, 0.65(800)= 520 people, got coffee, 10%, 0.10(800)= 80 people, got hot chocolate, and 25%, 0.25(800)= 200 people, got nothing. (That adds to 800 people so our assumption that "coffee", "hot chocolate", or "nothing" are the only options is valid.)

"What are the chances that someone in the shop during those two hours was a student who came in for office hours given that they got hot chocolate?"

From above, a total of 40+ 80= 120 people got hot chocolate. 40 of those were "a student who came in for officice hours" so the probability that "someone in the shop during those two hours was a student who came in for office hours given that they got hot chocolate" is 40/120= 1/3.
 
Hi,

Yeah the wording is confusing unfortunately, I didn't make up this problem. Yes, the larger group is assumed to be non-students (general public). This problem involves Bayes Theorem but I am having trouble with plugging in the numbers
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top