Changing the Hamiltonian without affecting the wave function

Isaac.Wang88
Messages
3
Reaction score
0
How many ways can we change the Hamiltonian without affecting the wave functions (eigenvectors) of it.
Like multiply all the elements in the matrix by a constant.
I'm facing a very difficult Hamiltonian,:cry: I want to simplify it, so the wave function will be much easier to derive.
Thanks in advance.
 
Physics news on Phys.org
Try Canonical transformations.

Or revert to the Lagrangian and work it over - much more freedom there - then convert it back. This is equivalent to the canonical transformations.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top