Checking My Understanding of the Naive Bayes Theorem

AI Thread Summary
The discussion focuses on understanding the Naive Bayes Theorem in the context of calculating the probability of rain given specific conditions in December. The key probabilities identified include P(Rain | Dec) as 9/30 and P(Cloudy | Rain) as 0.6, while clarifying that P(Cloudy | Rain) should not be confused with the overall probability of a cloudy morning, which is 0.4. The conversation emphasizes the importance of using a probability tree to simplify calculations and avoid confusion with conditional probabilities. It is noted that the assumption of December's data is crucial for accurate calculations. Overall, participants seek guidance on correctly applying the theorem to the given statistics.
jisbon
Messages
475
Reaction score
30
Homework Statement
Given the following statistics from a specific location:
60% of rainy days start out cloudy in the morning.
40% of all mornings are cloudy.
In December, it rains on average 9 out of 30 days.

In Dec, when it is a cloudy morning, what is the probability based on the given statistics that it is going to rain?
Relevant Equations
P(A|B) = P(B|A) P(A) / P(B)
I would like to check my understanding here to see if it is correct as I am currently stuck at the moment.
From the question, I can gather that:
P(Rain | Dec) = 9/30
P(Cloudy | Rain) = 0.6?
P(Cloudy | Rain) = 0.4

To answer the question:
P(Rain | <Cloudy, Morning, December> ) = P(Rain) * P(Cloudy|Rain) * P(Morning|Rain) * P(Dec|Rain)
= ? * 0.6 * ? * 9/30

This is going towards the Naive Bayes Theorem though, right? I think my initial thought process may be already wrong. Any guidance is greatly appreciated. Thank you!
 
Physics news on Phys.org
First, we have to assume that the data applies to December. If the data about cloudy and non-cloudy days is different in December from the annual average, then we have too little data to go on.

In that sense, it is just a straight calculation for December.
jisbon said:
Homework Statement:: Given the following statistics from a specific location:
60% of rainy days start out cloudy in the morning.
40% of all mornings are cloudy.
In December, it rains on average 9 out of 30 days.

In Dec, when it is a cloudy morning, what is the probability based on the given statistics that it is going to rain?
Relevant Equations:: P(A|B) = P(B|A) P(A) / P(B)
I may have advised this before, but if you use the raw equations, then you risk getting lost in a sea of conditional probabilities. You should try a probability tree for these problems.
jisbon said:
I would like to check my understanding here to see if it is correct as I am currently stuck at the moment.
From the question, I can gather that:
P(Rain | Dec) = 9/30
This is just the probability of rain for the problem. You don't need the conditional probability for December, as it is assumed across all calculations that we are in December.
jisbon said:
P(Cloudy | Rain) = 0.6?
Correct. That's what "60% of rainy days start out cloudy means".
jisbon said:
P(Cloudy | Rain) = 0.4
No. ##0.4## is the probability that any given day is cloudy in the morning.
jisbon said:
To answer the question:
P(Rain | <Cloudy, Morning, December> ) = P(Rain) * P(Cloudy|Rain) * P(Morning|Rain) * P(Dec|Rain)
= ? * 0.6 * ? * 9/30
You're just lost now trying to use these horrible equations, rather than a nice probability tree!
 
  • Like
Likes WWGD, Steve4Physics and FactChecker
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top