I Circular Orbit in Schwarzschild: Orbital Period

Click For Summary
The discussion centers on the orbital period for a circular orbit in Schwarzschild geometry, as derived by Schutz. The formula presented is P = 2π√(r³/M), but some participants express confusion over its derivation and accuracy, noting discrepancies in their own calculations. A key point raised is a potential transcription error regarding the expression for energy, with clarification that the correct form for energy is actually the square of the previously stated expression. Participants suggest that typographical errors in Schutz's text may contribute to the confusion, emphasizing the need for careful review of the material. Overall, the conversation highlights the complexities and challenges in understanding orbital mechanics in general relativity.
epovo
Messages
114
Reaction score
21
TL;DR
I followed Schutz derivation and I don't get his result
Schutz finds that the orbital period for a circular orbit in Schwarzschild is

$$ P = 2 \pi \sqrt {\frac { r^3} {M} }$$

He gets this from
$$ \frac {dt} {d\phi} = \frac {dt / d\tau} {d\phi/d\tau} $$
Where previously he had ## \frac {d\phi}{d\tau} = \tilde L / r^2## and ## \frac {dt}{d\tau} = \frac {\tilde E} { 1 - 2M/r}## and where

## \tilde L^2= \frac {Mr } { 1-3M/r}## and ##\tilde E = \frac {(1- 2M/r)^2} {1-3M/r} ##

After doing the algebra I don't get that expression for the period (I get a much more complicated expression).
I punched in some numbers for M and r in a spreadsheet and the period given by the expression above does not match the calculations I have done. It does not even seem to be a very good approximation. Help, please!
 
Physics news on Phys.org
It's in ch 11 section 1 (page 280 in my edition) under Perihelion Shift
 
Your expression for ##\tilde{E}## is wrong - it's the correct expression for ##\tilde{E}^2##. Schutz has it correct in equation 11.21 on p287 in my edition, and I think his result for ##P## follows.

You may have made a transcription error, or there may be a typo in your edition. Either is possible - I've commented before that I think Schutz needed a better editor.
 
  • Like
Likes berkeman, epovo and vanhees71
20230303_172233.jpg

Definitely a typo. Thank you!
 
  • Like
Likes Ibix and berkeman
epovo said:
Definitely a typo.
I have the second edition, so I hope you have the first edition... This particular text does seem to have more than usual stuff like this, so I would say that when you can't make sense of Schutz, "my textbook is wrong" (or at least confusingly written) should be a bit higher up your probability list than normal.
 
  • Like
  • Haha
Likes vanhees71 and PeterDonis
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...

Similar threads