Undergrad Circular Orbit in Schwarzschild: Orbital Period

Click For Summary
The discussion centers on the orbital period for a circular orbit in Schwarzschild geometry, as derived by Schutz. The formula presented is P = 2π√(r³/M), but some participants express confusion over its derivation and accuracy, noting discrepancies in their own calculations. A key point raised is a potential transcription error regarding the expression for energy, with clarification that the correct form for energy is actually the square of the previously stated expression. Participants suggest that typographical errors in Schutz's text may contribute to the confusion, emphasizing the need for careful review of the material. Overall, the conversation highlights the complexities and challenges in understanding orbital mechanics in general relativity.
epovo
Messages
114
Reaction score
21
TL;DR
I followed Schutz derivation and I don't get his result
Schutz finds that the orbital period for a circular orbit in Schwarzschild is

$$ P = 2 \pi \sqrt {\frac { r^3} {M} }$$

He gets this from
$$ \frac {dt} {d\phi} = \frac {dt / d\tau} {d\phi/d\tau} $$
Where previously he had ## \frac {d\phi}{d\tau} = \tilde L / r^2## and ## \frac {dt}{d\tau} = \frac {\tilde E} { 1 - 2M/r}## and where

## \tilde L^2= \frac {Mr } { 1-3M/r}## and ##\tilde E = \frac {(1- 2M/r)^2} {1-3M/r} ##

After doing the algebra I don't get that expression for the period (I get a much more complicated expression).
I punched in some numbers for M and r in a spreadsheet and the period given by the expression above does not match the calculations I have done. It does not even seem to be a very good approximation. Help, please!
 
Physics news on Phys.org
It's in ch 11 section 1 (page 280 in my edition) under Perihelion Shift
 
Your expression for ##\tilde{E}## is wrong - it's the correct expression for ##\tilde{E}^2##. Schutz has it correct in equation 11.21 on p287 in my edition, and I think his result for ##P## follows.

You may have made a transcription error, or there may be a typo in your edition. Either is possible - I've commented before that I think Schutz needed a better editor.
 
  • Like
Likes berkeman, epovo and vanhees71
20230303_172233.jpg

Definitely a typo. Thank you!
 
  • Like
Likes Ibix and berkeman
epovo said:
Definitely a typo.
I have the second edition, so I hope you have the first edition... This particular text does seem to have more than usual stuff like this, so I would say that when you can't make sense of Schutz, "my textbook is wrong" (or at least confusingly written) should be a bit higher up your probability list than normal.
 
  • Like
  • Haha
Likes vanhees71 and PeterDonis
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
611
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K