I Circular Orbit in Schwarzschild: Orbital Period

epovo
Messages
114
Reaction score
21
TL;DR Summary
I followed Schutz derivation and I don't get his result
Schutz finds that the orbital period for a circular orbit in Schwarzschild is

$$ P = 2 \pi \sqrt {\frac { r^3} {M} }$$

He gets this from
$$ \frac {dt} {d\phi} = \frac {dt / d\tau} {d\phi/d\tau} $$
Where previously he had ## \frac {d\phi}{d\tau} = \tilde L / r^2## and ## \frac {dt}{d\tau} = \frac {\tilde E} { 1 - 2M/r}## and where

## \tilde L^2= \frac {Mr } { 1-3M/r}## and ##\tilde E = \frac {(1- 2M/r)^2} {1-3M/r} ##

After doing the algebra I don't get that expression for the period (I get a much more complicated expression).
I punched in some numbers for M and r in a spreadsheet and the period given by the expression above does not match the calculations I have done. It does not even seem to be a very good approximation. Help, please!
 
Physics news on Phys.org
It's in ch 11 section 1 (page 280 in my edition) under Perihelion Shift
 
Your expression for ##\tilde{E}## is wrong - it's the correct expression for ##\tilde{E}^2##. Schutz has it correct in equation 11.21 on p287 in my edition, and I think his result for ##P## follows.

You may have made a transcription error, or there may be a typo in your edition. Either is possible - I've commented before that I think Schutz needed a better editor.
 
  • Like
Likes berkeman, epovo and vanhees71
20230303_172233.jpg

Definitely a typo. Thank you!
 
  • Like
Likes Ibix and berkeman
epovo said:
Definitely a typo.
I have the second edition, so I hope you have the first edition... This particular text does seem to have more than usual stuff like this, so I would say that when you can't make sense of Schutz, "my textbook is wrong" (or at least confusingly written) should be a bit higher up your probability list than normal.
 
  • Like
  • Haha
Likes vanhees71 and PeterDonis
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Back
Top