Clarification on Proof by Contradiction

Click For Summary

Homework Help Overview

The discussion revolves around the concept of proof by contradiction, specifically applied to the proposition that the product of any five consecutive integers is divisible by 120. Participants are exploring the validity of the proof structure and the proper formulation of negations in logical arguments.

Discussion Character

  • Conceptual clarification, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the correct formulation of the negation of the proposition, with some suggesting that the original poster's approach does not adequately generalize the argument. Others provide examples to illustrate potential flaws in reasoning.

Discussion Status

There is an ongoing examination of the logical structure of the proof, with some participants offering guidance on how to properly negate the proposition. Multiple interpretations of the proof's validity are being explored, and suggestions for refining the argument are being made.

Contextual Notes

Participants note the importance of generalizing the proof beyond specific examples and emphasize the need to consider the logical implications of the negation in the context of universally quantified statements.

  • #31
@Jonathanlikesmath now you are very rigorous but you did it the very hard way, I had in mind something like what @PeroK suggests at post #29.

More specifically, if we write the product as ##n(n+1)(n+2)(n+3)(n+4)## then it will be either ##n\pmod 5=0## in which case we are finished, or one of the cases of ##n\pmod 5=1,n\pmod 5=2,n\pmod 5=3,n\pmod 5=4##. If for example ##n\pmod 5=1## then ##(n+4)\pmod 5=n\pmod 5+4\pmod 5=1+4\pmod 5=5\pmod 5 =0##, hence in this case 5 divides n+4. Similarly we can handle the other cases.
 
Last edited:
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
  • #32
Delta2 said:
@Jonathanlikesmath now you are very rigorous but you did it the very hard way, I had in mind something like what @PeroK suggests at post #29.

More specifically, if we write the product as ##n(n+1)(n+2)(n+3)(n+4)## then it will be either ##n\pmod 5=0## in which case we are finished, or one of the cases of ##n\pmod 5=1,n\pmod 5=2,n\pmod 5=3,n\pmod 5=4##. If for example ##n\pmod 5=1## then ##(n+4)\pmod 5=n\pmod 5+4\pmod 5=1+4\pmod 5=5\pmod 5 =0##, hence in this case 5 divides n+4. Similarly we can handle the other cases.
Well, I soon won't forget this method. Thank you all for the help!
 
  • Like
Likes   Reactions: Delta2
  • #33
PeroK said:
A better approach if you want to use modular arithmetic is to take:
$$P = (n - 2)(n-1)n(n+1)(n+2) = n(n^2 -1)(n^2 - 4)$$If ##n## is not divisible by ##3##, then ##n = 1## or ##2 \ (mod \ 3)##; ##n^2 = 1 \ (mod \ 3)##, so ##n^2 -1 ## is divisible by ##3##. Etc.
Just to say that I thought reducing the product to three terms looked like a good idea (and it is always something to consider), but in this case it doesn't really help. @Delta2 's method is much simpler!
 
  • Like
Likes   Reactions: Delta2

Similar threads

Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
9
Views
4K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K