I Clarifying Meaning of a Conditional w/ Quantifiers (∃x)(∀y)(Fyx ⊃ Fyy)

  • I
  • Thread starter Thread starter The Head
  • Start date Start date
  • Tags Tags
    Conditional
The Head
Messages
137
Reaction score
2
TL;DR Summary
Interpreting: (∃x)(∀y) (Fyx ⊃ Fyy)
I've been reading a logic book and saw the logical statement below and have been trying to consider its meaning:

(∃x)(∀y) (Fyx ⊃ Fyy)

I keep going back and forth whether this statement is implying:
a) For all things, if they do F to x, then they do F to themselves
-OR-
b) If there's some x that all things do F to, they all do F to themselves

Appreciate any clarification. The conditional is just throwing me off because I'm not sure if the antecedent is guarantees everything is doing an action to some x or if it's just "for each thing" that is doing an action to x.
 
Physics news on Phys.org
Interesting question.

I take it to be something like (a).

Consider: (Ay)(Fyc -> Fyy): For any y, if y likes John, then y likes himself. 'likes' is 'F', John is a constant -- c. Informally, this statement says: 'anyone who likes John, also likes himself.' There's no implication that ALL people like John though.

Then your statement is just the existential generalisation on c of the above: there is someone who is such that, anybody who likes him also likes himself. Or 'somebody is liked by only people who like themselves.'

(b) sounds as if you've got a different bracketing in mind and the statement is in fact a conditional: if someone is liked by everyone, then everyone likes themselves:

[(Ex)(Ay)(Fyx)] -> Ay(Fyy)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top