[Cognitive Robotics] state estimation

Click For Summary

Discussion Overview

The discussion revolves around the topic of state estimation in cognitive robotics, specifically focusing on calculating probabilities using Bayes' rule in the context of robot positioning and measurement with Gaussian noise. Participants explore how to derive the necessary probabilities and address the implications of Gaussian noise on their calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant seeks assistance in calculating probabilities prob(x1|z1) and prob(x1|z2) using Bayes' rule, expressing uncertainty about how to handle Gaussian noise.
  • Another participant provides a formula for P(z1|x1) and discusses the calculation of P(z1) based on multiple positions, assuming an equally distributed prior for the robot's position.
  • There is a suggestion that the problem statement regarding Gaussian noise is confusing, with one participant asserting that added Gaussian noise should have a mean of 0, while another proposes that the noise has a shift of 1.
  • Participants discuss the implications of systematic error in measurements and how this affects the probability calculations for different positions.

Areas of Agreement / Disagreement

Participants express differing views on the treatment of Gaussian noise and the implications of the problem statement, indicating that there is no consensus on how to interpret the noise parameters and their effects on the calculations.

Contextual Notes

There are unresolved assumptions regarding the definitions of Gaussian noise and its parameters, as well as the implications of systematic errors in measurements on the probability calculations.

RandomUserName
Messages
6
Reaction score
0
Hey guys, I need some help. Here's my task:

View attachment 6189

Here's what I came up with: I need to calculate prob(x1|z1), prob(x1|z2) and so on and then just write down which has the highest probability. To do that, I would use Bayes rule, but for that, I need p(z1|x1) and p(z1). How do I get these?

I have no idea what to calculate for the case: robot is at position x1, what is prob to measure z1. What do I do with the Gaussian noise? :(
 

Attachments

  • 77bgVh6.png
    77bgVh6.png
    16 KB · Views: 124
Last edited by a moderator:
Physics news on Phys.org
RandomUserName said:
Hey guys, I need some help. Here's my task:

Here's what I came up with: I need to calculate prob(x1|z1), prob(x1|z2) and so on and then just write down which has the highest probability. To do that, I would use Bayes rule, but for that, I need p(z1|x1) and p(z1). How do I get these?

I have no idea what to calculate for the case: robot is at position x1, what is prob to measure z1. What do I do with the Gaussian noise? :(

Hi RandomUserName! Welcome to MHB! ;)

We have:
$$P(z_1\mid x_1) = P(z_1 \le Z < z_1 + dz \mid x_1) = f_1(z_1) dz$$
where $f_1$ is the gaussian distribution density for $x_1$.

And we have:
$$P(z_1) = P(z_1 \wedge (x_1 \vee x_2 \vee x_3 \vee x_4)) \\
= P((z_1 \wedge x_1) \vee (z_1 \wedge x_2) \vee (z_1 \wedge x_3) \vee (z_1 \wedge x_4))
= P(z_1 \wedge x_1) + P(z_1 \wedge x_2) + P(z_1 \wedge x_3) + P(z_1 \wedge x_4) \\
= P(z_1 \mid x_1)P(x_1) + P(z_1 \mid x_2)P(x_2) + P(z_1 \mid x_3)P(x_3) + P(z_1 \mid x_4)P(x_4)
$$
Since we assume an equally distributed prior, we have:
$$P(x_1)=P(x_2)=P(x_3)=P(x_4)=\frac 14$$

Can we find $P(x_1\mid z_1)$ now?
 
I like Serena said:
Hi RandomUserName! Welcome to MHB! ;)

We have:
$$P(z_1\mid x_1) = P(z_1 \le Z < z_1 + dz \mid x_1) = f_1(z_1) dz$$
where $f_1$ is the gaussian distribution density for $x_1$.

And we have:
$$P(z_1) = P(z_1 \wedge (x_1 \vee x_2 \vee x_3 \vee x_4)) \\
= P((z_1 \wedge x_1) \vee (z_1 \wedge x_2) \vee (z_1 \wedge x_3) \vee (z_1 \wedge x_4))
= P(z_1 \wedge x_1) + P(z_1 \wedge x_2) + P(z_1 \wedge x_3) + P(z_1 \wedge x_4) \\
= P(z_1 \mid x_1)P(x_1) + P(z_1 \mid x_2)P(x_2) + P(z_1 \mid x_3)P(x_3) + P(z_1 \mid x_4)P(x_4)
$$
Since we assume an equally distributed prior, we have:
$$P(x_1)=P(x_2)=P(x_3)=P(x_4)=\frac 14$$

Can we find $P(x_1\mid z_1)$ now?
Since you're asking like that, probably yeah :D.
But I'm not 100% sure how yet...

Can I just use this formula now?
prob(z1|x2) = this

prob(z2|x2) = this
 
RandomUserName said:
Since you're asking like that, probably yeah :D.
But I'm not 100% sure how yet...

Can I just use this formula now?
prob(z1|x2) = this

prob(z2|x2) = this

That's the formula yes, but if I'm not mistaken we should take $\mu_2=4$ instead of $\mu_2=5$.

To be honest, the problem statement is a bit confusing saying that the added Gaussian noise has $\mu=1$.
That just makes no sense - added Gaussian noise always has $\mu=0$.
I can only assume that they meant that the given Gaussian distribution was for $x_1$ with $\mu_1=1$, while the other Gaussian distributions would have the respective expectations for $x_i$ and $\sigma=2$. That is, $\mu_1=1,\mu_2=4,\mu_3=7,\mu_4=10$.
 
I like Serena said:
That's the formula yes, but if I'm not mistaken we should take $\mu_2=4$ instead of $\mu_2=5$.

To be honest, the problem statement is a bit confusing saying that the added Gaussian noise has $\mu=1$.
That just makes no sense - added Gaussian noise always has $\mu=0$.
I can only assume that they meant that the given Gaussian distribution was for $x_1$ with $\mu_1=1$, while the other Gaussian distributions would have the respective expectations for $x_i$ and $\sigma=2$. That is, $\mu_1=1,\mu_2=4,\mu_3=7,\mu_4=10$.
I asked about this, and this was the reply:
The noise has a shift of 1 (the mean), so if the real reading is 10, then the noisy reading (which will be the most probable) will be 11. Therefore, the difference between the expected reading at a certain x_i location (taking into account the noise effect ex: 11) and the real reading z_t should determine the probability p(z_t|x_i).​
 
RandomUserName said:
I asked about this, and this was the reply:
The noise has a shift of 1 (the mean), so if the real reading is 10, then the noisy reading (which will be the most probable) will be 11. Therefore, the difference between the expected reading at a certain x_i location (taking into account the noise effect ex: 11) and the real reading z_t should determine the probability p(z_t|x_i).​

Okay. So we have a systematic error in our measurements.
In that case I believe you're good to go.
 
I like Serena said:
Okay. So we have a systematic error in our measurements.
In that case I believe you're good to go.

Alright :)
Thanks for all your help!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K