gnome
- 1,031
- 1
Suppose I have several exponentially distributed random variables, each of them representing the probability that some particular event occurs within some amount of time. I can't seem to come up with any intuition as to how to combine those density functions (or distribution functions) to express probabilities about ANY of the events occurring.
To give a concrete example, say the A-train and the B-train arrive on separate tracks and their inter-arrival times are independent of each other, and let X be the continuous rv representing the amount of time until a train arrives. Say the density functions and distribution functions for the two train lines are given by:
f_a(x) = \frac{1}{4} e^{-\frac{x}{4}} \qquad F_a(x) = 1 - e^{-\frac{x}{4}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}
f_b(x) = \frac{1}{5} e^{-\frac{x}{5}} \qquad F_b(x) = 1 - e^{-\frac{x}{5}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}
so the expected time until an A-train arrives E_a[x] = 4\mbox{ min.}
and the expected time until a B-train arrives E_b[x] = 5\mbox{ min.}
and it is easy to determine the probability for an A-train to arrive within any specific amount of time, and similarly for a B-train.
But how can those functions be combined into a single distribution to express the expected time E_{a|b}[x] until ANY train arrives, or the probability that ANY train will arrive within, say 2 minutes?
To give a concrete example, say the A-train and the B-train arrive on separate tracks and their inter-arrival times are independent of each other, and let X be the continuous rv representing the amount of time until a train arrives. Say the density functions and distribution functions for the two train lines are given by:
f_a(x) = \frac{1}{4} e^{-\frac{x}{4}} \qquad F_a(x) = 1 - e^{-\frac{x}{4}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}
f_b(x) = \frac{1}{5} e^{-\frac{x}{5}} \qquad F_b(x) = 1 - e^{-\frac{x}{5}} \qquad \mbox{ for } x>0 \mbox{, and 0 otherwise}
so the expected time until an A-train arrives E_a[x] = 4\mbox{ min.}
and the expected time until a B-train arrives E_b[x] = 5\mbox{ min.}
and it is easy to determine the probability for an A-train to arrive within any specific amount of time, and similarly for a B-train.
But how can those functions be combined into a single distribution to express the expected time E_{a|b}[x] until ANY train arrives, or the probability that ANY train will arrive within, say 2 minutes?