Coming up with Theorems and proving them

  • Context: MHB 
  • Thread starter Thread starter Zoey93
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around formulating theorems based on a set of axioms related to games played by teams. Participants explore the implications of the axioms, propose theorems, and seek assistance in proving them. The focus is primarily on theoretical reasoning and mathematical proof construction.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose axioms regarding the structure of games and teams, including the requirement that each game involves two distinct teams and that there are at least four teams.
  • One participant suggests a theorem stating that there are at least two teams that play a game, based on the axioms provided.
  • Another participant introduces a second theorem claiming that if there are exactly four distinct teams, then there are at most 20 games, and begins to outline a proof for it.
  • Participants discuss the implications of the axioms on the maximum number of games, with one suggesting a graph theory approach to visualize different scenarios.
  • There is a discussion about the necessity of referencing specific axioms in proofs, particularly regarding the requirement that each game involves exactly one other team.

Areas of Agreement / Disagreement

Participants express differing views on the strength of the axioms and the implications for theorems. There is no consensus on the completeness of the proofs, and some participants seek clarification and refinement of their arguments.

Contextual Notes

Participants note that the existence axioms may limit the number of theorems that can be derived. There are also discussions about the need for rigorous references to axioms in proofs, particularly in relation to the structure of games.

Zoey93
Messages
15
Reaction score
0
Axioms 1 and 2 were given and axioms 3 and 4 I came up with:

Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games.

I need help with coming up with theorems for these axioms and proving them.
 
Physics news on Phys.org
Hmm. With existence axioms that weak, you might not have too many theorems you can prove. One model for your system is the following:

Code:
*   *
|
*   *

Here the * is a team, and the | is a game. This satisfies all four axioms. I suppose one theorem you could come up with is that there are at least two teams that play a game. It's not a very advanced theorem, but like I said, you don't have terribly strong existence axioms. I don't think you're guaranteed much structure beyond this model.

So let's take this theorem: how could you prove it?
 
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games.

Theorem 1: There are at least two teams that play a game.

Proof: According to Axiom 1, each game is played by two distinct teams, which we will call team A and team B. By Axiom 3, there exist at least one game.

I need help finishing up the proof.
 
Zoey93 said:
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games.

Theorem 1: There are at least two teams that play a game.

Proof: According to Axiom 1, each game is played by two distinct teams, which we will call team A and team B. By Axiom 3, there exist at least one game.

I need help finishing up the proof.

I think it would make more sense to start with your second line, so that it runs like this:

By Axiom 3, there exists at least one game, call it 'g'. By Axiom 1, 'g' must be played by two distinct teams, call them 'A' and 'B'. These are the two teams in the theorem, hence we are done.

You could strengthen your theorem just a bit by saying "There are at least two distinct teams that play a game." The proof would be no more complicated.
 
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games. I came up with another theorem because my professor wanted us to come up with two theorems. So, far this is what I got:

Theorem 2: If there are exactly 4 distinct teams, then there are at most 20 games.

Proof: By hypothesis we have exactly 4 distinct teams (which is allowed by Axiom 2), and I will call them A, B, C, and D. By Axiom 4, each team plays at most 10 games, but Axiom 3 requires there to exist at least one game between the teams.

But I need help to finish it up.
 
Zoey93 said:
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games. I came up with another theorem because my professor wanted us to come up with two theorems. So, far this is what I got:

Theorem 2: If there are exactly 4 distinct teams, then there are at most 20 games.

Proof: By hypothesis we have exactly 4 distinct teams (which is allowed by Axiom 2), and I will call them A, B, C, and D. By Axiom 4, each team plays at most 10 games, but Axiom 3 requires there to exist at least one game between the teams.

But I need help to finish it up.

Axiom 3 isn't going to help you here, because you're already thinking about the other direction - the maximum number of games allowed by your axioms. The minimum number of games is 1. To get the maximum number of games, you're going to need to think about graph theory, essentially. Try to draw representations of various scenarios. What if there are the maximum 10 games between A and B? Could A or B then have any games with C or D? Or what if it's more evenly distributed? Suppose there are 3 games between A and B, 3 between A and D, and 4 between A and C?

I feel like there's an elegant way to prove this theorem, but it's eluding me at the moment. Something along the lines of this: there are four teams. Each team can play a maximum of ten games. But each of those games must involve exactly one other team. Therefore, although, from each team's perspective, there are 40 games maximum, since each of these games must involve another team, and "use up" one of their games, there can only be a maximum of 20 games. This is not rigorous, but it might give you the idea of the proof.
 
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games. Theorem 2: If there are exactly 4 distinct teams, then there are at most 20 games.

Proof: By hypothesis we have exactly 4 distinct teams (which is allowed by Axiom 2), and I will call them A, B, C, and D. By Axiom 4, each team plays at most 10 games. Each team can play a maximum of ten games. But each of those games must involve exactly one other team. Therefore, although, from each team’s perspective, there are 40 games maximum, since each of these games must involve another team, and “use up” one of their games, there can only be a maximum of 20 games.

So, I turned this into my professor and this is what he said: For your proof of Theorem 2, you seem to be lacking a reference to an important axiom. In particular, when you say this “But each of those games must involve exactly one other team.” What is the reason for that statement?

I was thinking maybe I should also use Axiom 1 to prove this theorem??
 
Zoey93 said:
Axiom 1: Each game is played by two distinct teams.
Axiom 2: There are at least four teams.
Axiom 3: There exist at least one game.
Axiom 4: Each team plays at most 10 games. Theorem 2: If there are exactly 4 distinct teams, then there are at most 20 games.

Proof: By hypothesis we have exactly 4 distinct teams (which is allowed by Axiom 2), and I will call them A, B, C, and D. By Axiom 4, each team plays at most 10 games. Each team can play a maximum of ten games. But each of those games must involve exactly one other team. Therefore, although, from each team’s perspective, there are 40 games maximum, since each of these games must involve another team, and “use up” one of their games, there can only be a maximum of 20 games.

So, I turned this into my professor and this is what he said: For your proof of Theorem 2, you seem to be lacking a reference to an important axiom. In particular, when you say this “But each of those games must involve exactly one other team.” What is the reason for that statement?

I was thinking maybe I should also use Axiom 1 to prove this theorem??

Yep! It's a more-or-less direct implication.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K