Comparing $gH$ and $Hg$ for Infinite & Finite Groups

Click For Summary
SUMMARY

The discussion centers on the relationship between the cosets $gH$ and $Hg$ in the context of infinite and finite groups. It is established that if $G$ is a finite group, the condition $\forall h \in H\ \exists h' \in H$ such that $gh = h'g$ implies $gH = Hg$. However, this does not hold for infinite groups, as demonstrated by the example of the group $G = \langle a, b : b^{-1}ab = a^2 \rangle$ and subgroup $H = \langle a \rangle$ with $g = b^{-1}$. The discussion concludes that while the condition may suggest a relationship, it does not guarantee equality in all cases.

PREREQUISITES
  • Understanding of group theory concepts, specifically cosets and subgroups.
  • Familiarity with finite and infinite groups.
  • Knowledge of group presentations and homomorphisms.
  • Basic understanding of bijections in the context of group elements.
NEXT STEPS
  • Study the properties of finite groups and their subgroups.
  • Explore the implications of conjugation in group theory.
  • Learn about group presentations and their applications in abstract algebra.
  • Investigate examples of infinite groups and their subgroup structures.
USEFUL FOR

Mathematicians, particularly those specializing in abstract algebra, group theorists, and students seeking to deepen their understanding of group properties and relationships between cosets.

alexmahone
Messages
303
Reaction score
0
Suppose $G$ is an infinite group and $H$ is an infinite subgroup of $G$.

Let $g\in G$.

Suppose $\forall h\in H\ \exists h'\in H$ such that $gh=h'g$.

Can we conclude that $gH=Hg$?

What if $G$ and $H$ are of finite orders?
 
Physics news on Phys.org
Alexmahone said:
Suppose $G$ is an infinite group and $H$ is an infinite subgroup of $G$.

Let $g\in G$.

Suppose $\forall h\in H\ \exists h'\in H$ such that $gh=h'g$.

Can we conclude that $gH=Hg$?

What if $G$ and $H$ are of finite orders?
I don't have an answer, just an observation. It is possible that given g and h that the h' might generate a subset of H, not all of H. (ie. [math]\exists f: H \to H'[/math] is not an bijection.) In which case [math]gH = H'g \subseteq Hg[/math] in general. I don't know if that helps or not.

-Dan
 
Alexmahone said:
Suppose $G$ is an infinite group and $H$ is an infinite subgroup of $G$.

Let $g\in G$.

Suppose $\forall h\in H\ \exists h'\in H$ such that $gh=h'g$.

Can we conclude that $gH=Hg$?

What if $G$ and $H$ are of finite orders?

Hi Alexmahone,

I believe your statement is correct, but only for finite groups. Suppose $G$ is finite. The given condition implies $gH \subset Hg$. Since there is a bijection $gH \leftrightarrow Hg$, then $gH$ and $Hg$ have the same number of elements. Hence, $gH = Hg$.
 
Actually, the statement also holds when $G$ is commutative, infinite or not. The condition would not be needed in such a case.
 
Your problem rephrased slightly:
If $G$ is a group, $H$ a subgroup of $G$ and $g\in G$ with $gHg^{-1}\subseteq H$, does $gHg^{-1}=H$?

Euge has answered in the affirmative for some cases; also this follows if $g$ has finite order, easy proof.

I think an example is needed that shows this is not always true. To follow the example, you need to know a little about group presentations.

Let $G=<a\,,b\,:\, b^{-1}ab=a^2>,\,H=<a>\text{ and } g=b^{-1}$
Since conjugation is a homomorphism, $gHg^{-1}\subseteq H$. If this conjugation were an onto map, there would exist an integer $k$ with $ga^kg^{-1}=a$. But $ga^kg^{-1}=a^{2k}$ . Since $a$ has infinite order (loosely speaking there is no relation that allows $a$ to have finite order), we would get that $2k=1$, impossible. So $gHg^{-1}\neq H$.
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
967
  • · Replies 1 ·
Replies
1
Views
638
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K