MHB Complex accumulation points and open/closed

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Complex Points
Dustinsfl
Messages
2,217
Reaction score
5
All complex numbers of the form $(1/n) + (i/m)$, $n,m\in\mathbb{Z}^+$.Complex numbers aren't well ordered so how is this treated?
 
Physics news on Phys.org
dwsmith said:
All complex numbers of the form $(1/n) + (i/m)$, $n,m\in\mathbb{Z}^+$.Complex numbers aren't well ordered so how is this treated?

Hi dwsmith, :)

The notions of accumulation points, openness, closeness are defined for Topological spaces in general. Those definitions could be adapted to the set of real numbers or complex numbers. In Complex Variables and Applications by James Brown and Ruel Churchill you can find a good introduction about how these concepts are defined in the context of complex numbers. The approach is rather geometrical(you have to visualize the set in the Argand plane) but still I find it very intuitive.

All the points, \(\frac{1}{n}\mbox{ where }n\in\mathbb{Z}^+\) as well as \(\frac{i}{m}\mbox{ where }m\in\mathbb{Z}^+\) are limit points. Additionally zero is also a limit point. This set is neither open nor closed.

Herewith I have attached the relevant pages of Complex Variables and Applications by James Brown and Ruel Churchill for your reference.

Kind Regards,
Sudharaka.

1jb4ed.png

1zqx5pg.png
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top