Computing Quotient Space: Practical Example with Vector Spaces and Subspaces

Click For Summary
The discussion focuses on computing the quotient space U/V from a vector space U and a subspace V, emphasizing practical examples over formal definitions. A clear example is provided using R², where U is R² and V is the linear span of (1,0). In this case, equivalence classes consist of vectors where the y-coordinates are equal, leading to a representation of the quotient space as points on lines parallel to the y-axis. The conversation highlights that the quotient space retains the same field as the original vector space, and it is not feasible for U to be over the reals while U/V is over a finite field. Overall, the thread illustrates the concept of quotient spaces through practical examples and clarifies the relationship between vector spaces and their subspaces.
jamjar
Messages
10
Reaction score
0
Can anyone post me a clear example of how to compute the quotient space U/V from a vector space U and subspace V?
I've seen many formal definitions but I'm a little stuck on practical use.
I'm particularly interested in an example that shows how U and V being over the reals (for example) can result in the quotient being over a finite field.
 
Physics news on Phys.org
The quotient space should always be over the same field as your original vector space. To 'counterprove' your desired example, if U/V is over a finite field, the field has characteristic p, which means that for some u not in V, p*u is in V. But V is a vector space.

An example of a quotient space... I think in R2 is the best example. U is R2 V is the linear span of (1,0). Then U/V is going to be the set of all (a,b) + V. But this is ((a,0) + (0,b)) + V (a,0) is in V for all a, so (a,0)+V = 0+V which implies that (a,b) + V = (0,b) + V

In general for a finite dimensional U, if V has basis v1,...,vm[/sub] and this is extended to a basis of U by adding u1... un Then if u is in U, u = \sum_{1}^{m}a_iv_i + \sum_{1}^{n}b_iu_i where the a's and b's are in the field. Then any vi+V = 0+V so u+V = \sum_{1}^{n}b_iu_i + V and it's easy to see that U/V is isomorphic to the linear span of u1,...,un
 
A "quotient space" is always a collection of equivalence classes. Given a subspace V, we can define "u~ v" if and only if u- v is in V.

For a simple example, let U be R2, the set of all pairs (x, y) with the usual addition and multiplication and V the subspace {(x, 0)}. Two vectors are (x1, y1) and (x2, y2) are equivalent if and only if (x1,y1)- (x2,y2) is in (x1-x2, y1-y2) is in V which means y1=y2. So an equivalence class consists of all {(x,y0} where x is a variable and y0 is a specific number. As points, those are all the points on the line parallel to the y axis, y= y0. Of course, in order to make that a vector space you have to define an addition and scalar multiplication. The standard way of "adding" equivalence classes is to choose one member from each equivalence class. For example, there is an equivalence class consisting of all pairs of the form (x, 1) and another equivalence class consisting of all pairs of the form (x, 5). One "representative" of the first class is (3, 1) and a "representative" of the second is (4, 5). Their sum is (3, 1)+ (4, 5)= (7, 6). That is in the equivalence class of all pairs (x, 6) so {(x, 1)}+ {(x, 5)}= {(x, 6)}. To multiply by a scalar, you can do the same thing: a*{(u,y0)}= {( u, ay0)}. Of course, the pair (0, y0) is always in the equivalence class {(x, y0} so you can always use that pair and you can think of this quotient space being the space of points (0, y) which is a subspace of R2[/sub].

If you like, you can think of that as "collapsing" the line y= y0 to the single point (0,y0) so it's easy to see that quotient space is really the same as the subspace {(0,y)}.

Having said all that, I come to your last question! The definition of "quotient space" I have given- which I think is standard- clearly gives the quotient space as a vector spaced over the samefield as U and V. I can't think of any way of starting with U a vector space over R, say, and U/V being a vector space over a finite field.
 
Last edited by a moderator:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
859
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K