Condition number - Relative error

Click For Summary
SUMMARY

The discussion focuses on calculating the condition numbers of the matrix \( A = \begin{pmatrix} 1 & \gamma \\ 0 & 1 \end{pmatrix} \) using different norms: \( \text{cond}_1(A) \), \( \text{cond}_2(A) \), and \( \text{cond}_{\infty}(A) \). The condition numbers are derived as \( \text{cond}_1(A) = (|\gamma| + 1)^2 \) and \( \text{cond}_{\infty}(A) = (1 + |\gamma|)^2 \). The discussion also explores the implications of these condition numbers on the relative error of the solution \( x \) when small perturbations \( \delta_1 \) and \( \delta_2 \) are introduced in the system \( Ax = b \). The participants confirm the equivalence of definitions and methods for calculating the norms and condition numbers.

PREREQUISITES
  • Understanding of matrix norms, specifically \( \|A\|_1 \), \( \|A\|_2 \), and \( \|A\|_{\infty} \)
  • Familiarity with eigenvalues and eigenvectors of matrices
  • Knowledge of condition numbers in numerical analysis
  • Basic linear algebra concepts, including matrix inversion
NEXT STEPS
  • Study the properties of matrix norms and their applications in numerical stability
  • Learn about eigenvalue decomposition and its role in calculating matrix norms
  • Explore the implications of condition numbers on the sensitivity of linear systems
  • Investigate the use of perturbation theory in analyzing the effects of errors in computations
USEFUL FOR

Mathematicians, numerical analysts, and engineers who are involved in solving linear systems and are interested in understanding the stability and sensitivity of their solutions in the presence of perturbations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\gamma\in \mathbb{R}$ and $A=\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}$.

I want to calculate the condition numbers $\text{cond}_1(A) , \text{cond}_2(A) ,\text{cond}_{\infty}(A) $.

The determinant of the matrix $A$ is equal to $\det (A)=1\neq 0$, so the matrix $A$ is invertible.

The inverse matrix is $A^{-1}=\frac{1}{\det (A)}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}$.

  • \begin{equation*}\text{cond}_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1\end{equation*}

    The norm is defined by \begin{equation*}\|A\|_1:=\max_{1\leq k\leq 2}\sum_{j=1}^2|a_{jk}|\end{equation*}

    We have the following norms: \begin{align*}&\|A\|_1=\max \{|1|+|0|, |\gamma|+|1|\}=\max\{1, |\gamma|+1\}=|\gamma|+1 \\ &\|A^{-1}\|_1=\max \{|1|+|0|, |-\gamma|+|1|\}=\max\{1, |\gamma|+1\}=|\gamma|+1\end{align*}

    So, the condition number is $\text{cond}_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1=\left (\gamma|+1\right )\cdot \left (|\gamma|+1\right )=\left (|\gamma|+1\right )^2$.
  • \begin{equation*}\text{cond}_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2\end{equation*}

    The norm is defined by \begin{equation*}\|A\|_2:=\max\left \{\sqrt{\lambda} : \lambda \text{ ist Eigenwert von } \overline{A}^TA\right \}\end{equation*} right? (Wondering)

    Since we have only real numbers, it is $\overline{A}^T=A^T$.

    We have that \begin{equation*}A^TA=\begin{pmatrix}1 & 0\\ \gamma & 1\end{pmatrix}\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & \gamma \\ \gamma & \gamma^2+1\end{pmatrix} \ \text{ and } \ (A^{-1})^TA^{-1}=\begin{pmatrix}1 & 0\\ -\gamma & 1\end{pmatrix}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ -\gamma & \gamma^2+1\end{pmatrix}\end{equation*}

    The eigenvalues are $\frac{\gamma^2-2\pm \sqrt{\gamma^4-4\gamma^2}}{2}$, or not? So is \begin{equation*}\|A\|_2=\|A^{-1}\|_2=\sqrt{\frac{\gamma^2-2+ \sqrt{\gamma^4-4\gamma^2}}{2}}\end{equation*} ? (Wondering)
  • \begin{equation*}\text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}\end{equation*}

    The norm is defined by \begin{equation*}\|A\|_{\infty}:=\max_{1\leq j\leq 2}\sum_{k=1}^2|a_{jk}|\end{equation*}

    We have the following norms: \begin{align*}&\|A\|_{\infty}=\max \{|1|+|\gamma|, |0|+|1|\}=\max\{1+|\gamma|, 1\}=1+|\gamma| \\ &\|A^{-1}\|_{\infty}=\max \{|1|+|-\gamma|, |0|+|1|\}=\max\{1+|\gamma|,1\}=1+|\gamma|\end{align*}

    So, the condition number is $\text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}=\left (1+\gamma|\right )\cdot \left (1+|\gamma|\right )=\left (1+|\gamma|\right )^2$.
Then for $Ax=\begin{pmatrix}1+\delta_1 \\ 1+\delta_2\end{pmatrix}$ where $\delta_1, \delta_2$ are small errors, we have to discuss with $\|\cdot \|_{\infty}$ how $\gamma$ affects the relative error of the result $x$. Do we use here the relation \begin{equation*}\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}\leq \text{cond}_{\infty}(A)\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}\end{equation*} ? (Wondering)
 
Physics news on Phys.org
mathmari said:
  • \begin{equation*}\text{cond}_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2\end{equation*}

    The norm is defined by \begin{equation*}\|A\|_2:=\max\left \{\sqrt{\lambda} : \lambda \text{ ist Eigenwert von } \overline{A}^TA\right \}\end{equation*} right? (Wondering)

Hey mathmari!

That's an equivalent definition.
The proper definition is:
\begin{equation*}\|A\|_2:=\sup_{x\ne 0} \frac{\|Ax\|_2}{\|x\|_2}\end{equation*}
(Nerd)

mathmari said:
  • Since we have only real numbers, it is $\overline{A}^T=A^T$.

    We have that \begin{equation*}A^TA=\begin{pmatrix}1 & 0\\ \gamma & 1\end{pmatrix}\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & \gamma \\ \gamma & \gamma^2+1\end{pmatrix} \ \text{ and } \ (A^{-1})^TA^{-1}=\begin{pmatrix}1 & 0\\ -\gamma & 1\end{pmatrix}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ -\gamma & \gamma^2+1\end{pmatrix}\end{equation*}

    The eigenvalues are $\frac{\gamma^2-2\pm \sqrt{\gamma^4-4\gamma^2}}{2}$, or not? So is \begin{equation*}\|A\|_2=\|A^{-1}\|_2=\sqrt{\frac{\gamma^2-2+ \sqrt{\gamma^4-4\gamma^2}}{2}}\end{equation*} ?

Yep. (Nod)

mathmari said:
Then for $Ax=\begin{pmatrix}1+\delta_1 \\ 1+\delta_2\end{pmatrix}$ where $\delta_1, \delta_2$ are small errors, we have to discuss with $\|\cdot \|_{\infty}$ how $\gamma$ affects the relative error of the result $x$. Do we use here the relation \begin{equation*}\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}\leq \text{cond}_{\infty}(A)\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}\end{equation*} ?

Yep. (Thinking)
 
Klaas van Aarsen said:
Hey mathmari!

That's an equivalent definition.
The proper definition is:
\begin{equation*}\|A\|_2:=\sup_{x\ne 0} \frac{\|Ax\|_2}{\|x\|_2}\end{equation*}
(Nerd)

We have that $$Ax=\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}\begin{pmatrix}x_1 \\ x_2\end{pmatrix}=\begin{pmatrix}x_1+\gamma \ x_2 \\ x_2\end{pmatrix}$$
Then $$\|Ax\|_2=\sqrt{\left (x_1+\gamma \ x_2\right )^2+x_2^2} \ \text{ and } \ \||x\|_2=\sqrt{x_1^2+x_2^2}$$

So \begin{equation*}\|A\|_2:=\sup_{x\ne 0} \frac{\|Ax\|_2}{\|x\|_2}=\sup_{x\ne 0} \frac{\sqrt{\left (x_1+\gamma \ x_2\right )^2+x_2^2}}{\sqrt{x_1^2+x_2^2}}\end{equation*} Is everything correct so far? How could we continue? I got stuck right now. (Wondering)
Klaas van Aarsen said:
Yep. (Thinking)
We have that $\text{cond}_{\infty}(A)=\left (1+|\gamma|\right )^2$. Do we get from $Ax$ that $b=\begin{pmatrix}1 \\ 1\end{pmatrix}$ and $\Delta b=\begin{pmatrix}1+\delta_1 \\ 1+\delta_2\end{pmatrix}$ ? If so, we have that $\|b\|_{\infty}=1$ and $\|\Delta b\|_{\infty}=\max \{1+\delta_1, 1+\delta_2\}$, right?

What do we get from that? (Wondering)
 
Last edited by a moderator:
mathmari said:
We have that $$Ax=\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}\begin{pmatrix}x_1 \\ x_2\end{pmatrix}=\begin{pmatrix}x_1+\gamma \ x_2 \\ x_2\end{pmatrix}$$
Then $$\|Ax\|_2=\sqrt{\left (x_1+\gamma\right )^2+x_2^2} \ \text{ and } \ \||x\|_2=\sqrt{x_1^2+x_2^2}$$

So \begin{equation*}\|A\|_2:=\sup_{x\ne 0} \frac{\|Ax\|_2}{\|x\|_2}=\sup_{x\ne 0} \frac{\sqrt{\left (x_1+\gamma\right )^2+x_2^2}}{\sqrt{x_1^2+x_2^2}}\end{equation*} Is everything correct so far? How could we continue? I got stuck right now.

What you had was already correct.
The typical way to calculate $\|A\|_2$ is by taking the square root of the largest eigenvalue of $\overline A^T A$. (Thinking)After all, the definition you gave is equivalent.
The proof starts with:
\begin{equation*}\|Ax\|_2 = \sqrt{\overline{(Ax)}^T Ax} =\sqrt{\overline x^T \overline A^T A x}
=\sqrt{\overline x^T \left(\overline A^T A\right) x}\end{equation*}
The matrix $\overline A^T A$ is Hermitian, meaning we can diagonalize it as $VD\overline V^T$, where $D$ is a diagonal matrix with real values on its diagonal, and $V$ is a unitary matrix that consists of the normalized eigenvectors (Spectral theorem).
Taking this forward we will find that those definitions are indeed equivalent, and it gives us a method to calculate $\|A\|_2$.
(Nerd)
mathmari said:
We have that $\text{cond}_{\infty}(A)=\left (1+|\gamma|\right )^2$. Do we get from $Ax$ that $b=\begin{pmatrix}1 \\ 1\end{pmatrix}$ and $\Delta b=\begin{pmatrix}1+\delta_1 \\ 1+\delta_2\end{pmatrix}$ ? If so, we have that $\|b\|_{\infty}=1$ and $\|\Delta b\|_{\infty}=\max \{1+\delta_1, 1+\delta_2\}$, right?

What do we get from that?

That should be $\|\Delta b\|_{\infty}=\max \{|\delta_1|, |\delta_2|\}$, shouldn't it?

Can we solve $x$ from $Ax=b$? And find its norm as well? (Wondering)
 
Klaas van Aarsen said:
What you had was already correct.
The typical way to calculate $\|A\|_2$ is by taking the square root of the largest eigenvalue of $\overline A^T A$. (Thinking)

Ah ok! So the condition number is equal to $\frac{\gamma^2-2+ \sqrt{\gamma^4-4\gamma^2}}{2}$, isn't it? (Wondering)
Klaas van Aarsen said:
After all, the definition you gave is equivalent.
The proof starts with:
\begin{equation*}\|Ax\|_2 = \sqrt{\overline{(Ax)}^T Ax} =\sqrt{\overline x^T \overline A^T A x}
=\sqrt{\overline x^T \left(\overline A^T A\right) x}\end{equation*}
The matrix $\overline A^T A$ is Hermitian, meaning we can diagonalize it as $VD\overline V^T$, where $D$ is a diagonal matrix with real values on its diagonal, and $V$ is a unitary matrix that consists of the normalized eigenvectors (Spectral theorem).
Taking this forward we will find that those definitions are indeed equivalent, and it gives us a method to calculate $\|A\|_2$.
(Nerd)

Ahh ok! (Nerd)

Klaas van Aarsen said:
That should be $\|\Delta b\|_{\infty}=\max \{|\delta_1|, |\delta_2|\}$, shouldn't it?

Oh yes, you're right!
Klaas van Aarsen said:
Can we solve $x$ from $Ax=b$? And find its norm as well? (Wondering)

We have that $$x=A^{-1}b=\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=\begin{pmatrix} 1-\gamma\\ 1\end{pmatrix}$$

Therefore $\|x\|_{\infty}=\max \{|1-\gamma|, 1\}$, right? (Wondering)

We have that $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot \max \{|1-\gamma|, 1\}\cdot \max \{|\delta_1|, |\delta_2|\}$ .

How could we continue? Do we just say that this is an upper bound of the relative error that it dependent of $\gamma$ ? (Wondering)
 
Last edited by a moderator:
mathmari said:
Ah ok! So the condition number is equal to $\frac{\gamma^2-2+ \sqrt{\gamma^4-4\gamma^2}}{2}$, isn't it?

Yes... although... shouldn't it be $\frac{\gamma^2+2+ \sqrt{\gamma^4+4\gamma^2}}{2}$?
I think that's what the biggest eigenvalue is. (Thinking)

mathmari said:
We have that $$x=A^{-1}b=\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix}=\begin{pmatrix} 1-\gamma\\ 1\end{pmatrix}$$

Therefore $\|x\|_{\infty}=\max \{|1-\gamma|, 1\}$, right? (Wondering)

We have that $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot \max \{|1-\gamma|, 1\}\cdot \max \{|\delta_1|, |\delta_2|\}$ .

How could we continue?

How about splitting cases?
Case 1: $|1-\gamma| \le 1$.
Case 2: $|1-\gamma| > 1$.
(Thinking)
 
Klaas van Aarsen said:
Yes... although... shouldn't it be $\frac{\gamma^2+2+ \sqrt{\gamma^4+4\gamma^2}}{2}$?
I think that's what the biggest eigenvalue is. (Thinking)

Ah yes!
If we want to try the definition with the supremum, how can we find that? (Wondering)
Klaas van Aarsen said:
How about splitting cases?
Case 1: $|1-\gamma| \le 1$.
Case 2: $|1-\gamma| > 1$.
(Thinking)

Is the relative error $\|\Delta x\|_{\infty}$ or $\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}$ ? (Wondering) Case 1: $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot \max \{|\delta_1|, |\delta_2|\} $

Case 2: $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot (|1-\gamma|)\cdot \max \{|\delta_1|, |\delta_2|\}$

What do we get from that? (Wondering)
 
mathmari said:
If we want to try the definition with the supremum, how can we find that?

Let's see...

Method 1:
$$\|Ax\|_2 = \sup_{x\ne 0}\frac{\|Ax\|}{\|x\|} = \sup_{\|x\|= 1}\|Ax\| = \sqrt{\sup_{\|x\|= 1}\|Ax\|^2}
= \sqrt{\sup_{x^2+y^2= 1}((x+\gamma y)^2 + y^2)} \\
= \sqrt{\sup_{x^2+y^2= 1}(x^2+2\gamma xy + \gamma^2y^2 + y^2)}
= \sqrt{\sup_{x^2+y^2= 1}(\gamma^2y^2+2\gamma xy + 1)}
$$
We can find $\sup\limits_{x^2+y^2= 1}(\gamma^2y^2+2\gamma xy + 1)$ with Lagrange Multipliers can't we? (Thinking)

Method 2:
$$\|Ax\|_2 = \sup_{x\ne 0}\frac{\|Ax\|}{\|x\|} = \sup_{\|x\|= 1}\|Ax\| = \sqrt{\sup_{\|x\|= 1}\|Ax\|^2}
= \sqrt{\sup_{\|x\|= 1}(Ax)^TAx}
= \sqrt{\sup_{\|x\|= 1}x^T (A^T A) x} \\
= \sqrt{\sup_{\|x\|= 1}x^T V D V^T x}
= \sqrt{\sup_{\|x\|= 1}(V^T x)^T D (V^T x)}
= \sqrt{\sup_{\|y\|= 1}y^T D y}
= \sqrt{\sup_{\|y\|= 1}(\lambda_1 y_1^2 + \lambda_2 y_2^2)}
$$
where $D$ is a diagonal matrix with the eigenvalues $\lambda_1 \ge \lambda_2 \ge 0$ of $(A^TA)$ that you already found on its diagonal, and where $V$ is the corresponding matrix of normalized eigenvectors.

The expression reaches the supremum when $y_1=1$ and $y_2=0$ doesn't it? (Wondering)
mathmari said:
Is the relative error $\|\Delta x\|_{\infty}$ or $\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}$ ?

$\|\Delta x\|$ is called the absolute error and $\frac{\|\Delta x\|}{\|x\|}$ is called the relative error.
mathmari said:
Case 1: $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot \max \{|\delta_1|, |\delta_2|\} $

Case 2: $\|\Delta x\|_{\infty}\leq \text{cond}_{\infty}(A)\cdot \|x\|_{\infty}\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}=\left (1+|\gamma|\right )^2\cdot (|1-\gamma|)\cdot \max \{|\delta_1|, |\delta_2|\}$

What do we get from that?

I'd write it as:
\begin{cases}\|\Delta x\|_{\infty}\leq \left (1+|\gamma|\right )^3\cdot \|\Delta b\|_{\infty} & \text{if } \gamma < 0 \\
\|\Delta x\|_{\infty}\leq \left (1+|\gamma|\right )^2\cdot \|\Delta b\|_{\infty} & \text{if } 0\le \gamma\le 2 \\
\|\Delta x\|_{\infty}\leq \left (\gamma + 1\right )^2\left (\gamma - 1\right )\cdot \|\Delta b\|_{\infty} & \text{if } \gamma > 2 \\
\end{cases}
I didn't make a mistake did I? (Wondering)

It shows that the absolute error in the solution $x$ increases with $|\gamma|^3$ with respect to the absolute error in $b$ for sufficiently large positive and negative numbers.
It increases with $(1+|\gamma|)^3$ for negative numbers.
And with $(1+|\gamma|)^2$ for small positive numbers (smaller than $2$).
 
Klaas van Aarsen said:
$\|\Delta x\|$ is called the absolute error and $\frac{\|\Delta x\|}{\|x\|}$ is called the relative error.

I'd write it as:
\begin{cases}\|\Delta x\|_{\infty}\leq \left (1+|\gamma|\right )^3\cdot \|\Delta b\|_{\infty} & \text{if } \gamma < 0 \\
\|\Delta x\|_{\infty}\leq \left (1+|\gamma|\right )^2\cdot \|\Delta b\|_{\infty} & \text{if } 0\le \gamma\le 2 \\
\|\Delta x\|_{\infty}\leq \left (\gamma + 1\right )^2\left (\gamma - 1\right )\cdot \|\Delta b\|_{\infty} & \text{if } \gamma > 2 \\
\end{cases}
I didn't make a mistake did I? (Wondering)

It shows that the absolute error in the solution $x$ increases with $|\gamma|^3$ with respect to the absolute error in $b$ for sufficiently large positive and negative numbers.
It increases with $(1+|\gamma|)^3$ for negative numbers.
And with $(1+|\gamma|)^2$ for small positive numbers (smaller than $2$).
Ahh ok!

So from \begin{equation*}\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}\leq \left (1+|\gamma|\right )^2\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}\end{equation*} we get that the relative error in the solution $x$ increases with $\gamma^2$ with respect to the relatve error in $b$, right? (Wondering)
 
  • #10
mathmari said:
Ahh ok!

So from \begin{equation*}\frac{\|\Delta x\|_{\infty}}{\|x\|_{\infty}}\leq \left (1+|\gamma|\right )^2\cdot \frac{\|\Delta b\|_{\infty}}{\|b\|_{\infty}}\end{equation*} we get that the relative error in the solution $x$ increases with $\gamma^2$ with respect to the relatve error in $b$, right?

For sufficiently large $|\gamma|$ yes. (Nod)
For small $|\gamma|$ it increases linearly.
 

Similar threads

  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K