MHB Conditional expected value (using measure theory)

Click For Summary
The discussion focuses on proving the property that the expected value of the conditional expectation equals the expected value of the original random variable, specifically that E(E(X|G)) = E(X). The user attempts to utilize the definition of conditional expected value through the relationship E(I_hE(X|G)) = E(I_hX) for every h in G. They establish that if Z = E(X|G), then Z is G-measurable, leading to the conclusion that E[Z] = E[X]. The proof confirms the validity of the property using measure theory principles.
Barioth
Messages
47
Reaction score
0
Hi, I'm trying to show that
Givien a probability triplet $$(\theta,F,P)$$
with $$G\in F$$ a sub sigma algebra
$$E(E(X|G))=E(X)$$

Now I want to use $$E(I_hE(X|G))=E(I_hX)$$
for every $$h\in G $$

since that's pretty much all I've for the definition of conditional expected value.

I know this property should use the definition of expected value, but I can't get it to work.

Thanks
 
Physics news on Phys.org
Let $\mathcal{G} \subset \mathcal{F}$ be a sub $\sigma$-algebra of $\mathcal{F}$ then we have to prove:
$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$$

Set $Z = \mathbb{E}[X|\mathcal{G}]$ then by definition $Z$ is $\mathcal{G}$-measurable and $\forall G \in \mathcal{G}: \mathbb{E}[ZI_G] = \mathbb{E}[XI_G]$. Since $\mathcal{G}$ is a sub $\sigma$-algebra it has to contain $\Omega$ thus in particular $\mathbb{E}[ZI_{\Omega}] = \mathbb{E}[XI_{\Omega}]$ which means $\mathbb{E}[Z] = \mathbb{E}[X]$. Hence $\mathbb{E}[Z] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$.
 
Thanks, very clean!
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K