What is Measure theory: Definition and 109 Discussions
In mathematics, a measure on a set is a systematic way to assign a number, intuitively interpreted as its size, to some subsets of that set, called measurable sets. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the usual length, area, or volume to subsets of a Euclidean spaces, for which this be defined. For instance, the Lebesgue measure of an interval of real numbers is its usual length.
Technically, a measure is a function that assigns a non-negative real number or +∞ to (certain) subsets of a set X (see § Definition, below). A measure must further be countably additive: if a 'large' subset can be decomposed into a finite (or countably infinite) number of 'smaller' disjoint subsets that are measurable, then the 'large' subset is measurable, and its measure is the sum (possibly infinite) of the measures of the "smaller" subsets.
In general, if one wants to associate a consistent size to all subsets of a given set, while satisfying the other axioms of a measure, one only finds trivial examples like the counting measure. This problem was resolved by defining measure only on a sub-collection of all subsets; the so-called measurable subsets, which are required to form a σ-algebra. This means that countable unions, countable intersections and complements of measurable subsets are measurable. Non-measurable sets in a Euclidean space, on which the Lebesgue measure cannot be defined consistently, are necessarily complicated in the sense of being badly mixed up with their complement. Indeed, their existence is a non-trivial consequence of the axiom of choice.
Measure theory was developed in successive stages during the late 19th and early 20th centuries by Émile Borel, Henri Lebesgue, Johann Radon, and Maurice Fréchet, among others. The main applications of measures are in the foundations of the Lebesgue integral, in Andrey Kolmogorov's axiomatisation of probability theory and in ergodic theory. In integration theory, specifying a measure allows one to define integrals on spaces more general than subsets of Euclidean space; moreover, the integral with respect to the Lebesgue measure on Euclidean spaces is more general and has a richer theory than its predecessor, the Riemann integral. Probability theory considers measures that assign to the whole set the size 1, and considers measurable subsets to be events whose probability is given by the measure. Ergodic theory considers measures that are invariant under, or arise naturally from, a dynamical system.
I have a sequence of functions ##0\leq f_1\leq f_2\leq ... \leq f_n \leq ...##, each one defined in ##\mathbb{R}^n## with values in ##\mathbb{R}##. I have also that ##f_n\uparrow f##.
Every ##f_i## is the limit (almost everywhere) of "step" functions, that is a linear combination of rectangles...
Hi,
I would like to know if an undergraduate student in physics could be able to study measure theory in order to have a better understanding of the probability theory and go further in this way (stochastic process) ?
Assuming a first year of calculus and the level of "Mathematical methods in...
The claim states the following:
Let ##(X,\mathcal{A},\mu)## be a measurable space, ##E## is a measurable subset of ##X## and ##f## is a measurable bounded function which has a bounded support in ##E##.
Prove that: if ##f\ge 0## almost everywhere in ##E##, then for each measurable subset...
Hello everyone,
My question for this thread concerns the application of (mainly) mathematical analysis to fields such as signal processing and machine learning. More specifically, I was wondering if you happen to know of some interesting application of things like measure theory or functional...
I tried to derive the right hand side of the Radon-Nikodym derivative above but I got different result, here is my attempt:
\begin{equation} \label{eq1}
\begin{split}
\frac{\mathrm d\mu_{\Theta\mid X}}{\mathrm d\mu_\Theta}(\theta \mid x) &= f_{\Theta\mid X}(\theta\mid x) \mathrm \space...
I am an incoming graduate student in Theoretical Physics at Universiteit Utrecht, and I struggle to make a choice for one of my mathematical electives. I hope someone can help me out. My main interests lie in the fields of Statistical Physics, phase transitions and collective and critical...
I'm trying to learn about Abstract Wiener Spaces and Gaussian Measures in a general context. For that I'm reading the paper Abstract Wiener Spaces by Leonard Gross, which seems to be where these things were first presented.
Now, I'm having a hard time to grasp the idea/motivation behind the...
Hi I am sitting with a homework problem which is to show if I can actually integrate a function. with 2D measure of lebesgue. the function is given by ##\frac{x-y}{(x+y)^2} d \lambda^2 (x,y)##.
I know that a function ##f## is integrable if ##f \in L^{1}(\mu) \iff \int |f|^{1} d \mu < \infty##...
Problem:
Let $E$ have finite outer measure. Show that $E$ is measurable if and only if there is a $F_\sigma$ set $F \subset E$ with $m^*\left(F\right)=m^*\left(E\right)$.
Proof:
"$\leftarrow$"
To Show: $E=K\cup N$ where $K$ is $F_\sigma$ and $m^*(N)=m(N)=0$.
By assumption, $\exists F$, and...
I am studying Analysis on Manifolds by Munkres. He introduces improper/extended integrals over open set the following way: Let A be an open set in R^n; let f : A -> R be a continuous function. If f is non-negative on A, we define the (extended) integral of f over A, as the supremum of all the...
Hello. I am studying Analysis on Manifolds by Munkres. I have a problem with a proof in section 20. It states that:
Let A be an n by n matrix. Let h:R^n->R^n be the linear transformation h(x)=A x. Let S be a rectifiable set (the boundary of S BdS has measure 0) in R^n. Then v(h(S))=|detA|v(S)...
##X_i## is an independent and identically distributed random variable drawn from a non-negative discrete distribution with known mean ##0 < \mu < 1## and finite variance. No probability is assigned to ##\infty##.
Now, given ##1<M##, a sequence ##\{X_i\}## for ##i\in1...n## is said to meet...
Hi!
Can anyone recommend a good introductory book for measure theory? I've found Terence Tao's online book to be a good start, but would I be asking too much if I wanted something even more introductory?
Ultimately I'm working toward Ergodic theory (and probability theory along the way) with...
Hello. I have problem with this integral :
\lim_{n \to \infty } \int_{\mathbb{R}^+} \left( 1+ \frac{x}{n} \right) \sin ^n \left( x \right) d\mu_1 where ## \mu_1## is Lebesgue measure.
Hi.
Is there some kind of measure theory generalized to uncountable unions? Of course one needs to take care how to make sense of sums over an uncountable index set. I was thinking about following formulation of the additivity property of the "measure":
$$\mu\left(\bigcup_{i\in\ I}...
Homework Statement
Suppose that the sample space is the set of all real numbers and that every interval of the form (-infinity, b] for any real number b is an event. Show that for any real number b (-infinity, b) must also be an event.
The Attempt at a Solution
use the 3 conditions required...
I'm not sure if this question belongs to here, but here it goes
Suppose you have to integrate over a lie group in the fundamental representation. If you pass to the adjoint representation of that group, does the Haar measure have to change? I think that it should not change because it is...
Not sure about the translated term limited (from German); perhaps cut-off function?
Homework Statement
Let f be a measurable function in a measure space (\Omega, \mathcal{F}, \mu) and C>0. Show that the following function is measurable:
f_C(x) =
\left\{
\begin{array}{ll}
f(x) & \mbox{if }...
I was quite distraught knowing that chegg.com has no textbook solutions for "measure theory" even though it has four for abstract algebra. Could it be that the textbooks are called something else?
In another math thread
https://www.physicsforums.com/threads/categorizing-math.889809/
several people expressed their opinion that, while statistics is a branch of applied mathematics, the probability theory is pure mathematics and a branch of analysis, or more precisely, a branch of measure...
Hi,
I am looking for a book for studying probability theory using measure theory. This is the first course I am taking of probability. Notions and theorems from measure theory are part of this course.
As it turns out, this is a catastrophic disaster, and the textbook for this course is also not...
Let us define, as Kolmogorov-Fomin's Элементы теории функций и функционального анализа does, the definition of outer measure of a bounded set ##A\subset \mathbb{R}^n## as $$\mu^{\ast}(A):=\inf_{A\subset \bigcup_k P_k}\sum_k m(P_k)$$where the infimum is extended to all the possible covers of...
It has always struck me that extensive quantities (kinetic energy, volume, momentum, angular momentum, mass, entropy, ...) could be defined as measures (https://en.wikipedia.org/wiki/Measure_(mathematics)) whereas intensive quantities are fields. Are there known ressources that put emphasis on...
Hello, friends! Let us define the external measure of the set ##A\subset \mathbb{R}^n## as $$\mu^{\ast}(A):=\inf_{A\subset \bigcup_k P_k}\sum_k m(P_k)$$where the infimum is extended to all the possible covers of ##A## by finite or countable families of ##n##-paralleliped ##P_k=\prod_{i=1}^n...
Hi everyone, in this days i was seeing a little of Fourier series and transform, and i wondered if it was necessary to better understand before the measure and Lebesgue integral before studying it. Or it's not necessary?
Hello, friends! I have been told that, if ##\mathbf{J}## is of class ##C^2## and ##V\subset \mathbb{R}^3## is a ##\mu##-measurable and bounded set, where ##\mu## is the ordinary Lebesgue measure on ##\mathbb{R}^3##, then, for all ##\mathbf{x}\in\mathbb{R}^3##...
Homework Statement
Suppose E1 and E2 are a pair of compact sets in Rd with E1 ⊆ E2, and let a = m(E1) and b=m(E2). Prove that for any c with a<c<b, there is a compact set E withE1 ⊆E⊆E2 and m(E) = c.
Homework Equations
m(E) is ofcourese referring to the outer measure of E
The Attempt at a...
Hi
I am trying to teach myself Measure Theory and I am using the book: Real Analysis by Stein and Skakarchi from Princeton.
I want to check if my answers to the questions are correct, so I am asking: Does anyone have the answers to the questions in chapter 1 ?
I'm trying to read Brian Hall's book "Quantum Theory for Mathematicians". While (I think) I have a basic grasp of most of the prerequisites, I don't know any measure theory. According to the appendix, presumed knowledge includes "the basic notions of measure
theory, including the concepts of...
I am working on a problem##^{(1)}## in Measure & Integration (chapter on Product Measures) like this:
Suppose that ##f## is real-valued and integrable with respect to 2-dimensional Lebesgue measure on ##[0, 1]^2## and also
##\int_{0}^{a} \int_{0}^{b} f(x, y) dy dx = 0##
for all ##a, b \in...
I am reviewing this http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf [Broken] on the approximating power of neural networks and I came across a definition that I could not quite understand. The definition reads:
where $I_n$ is the n-dimensional unit hypercube and $M(I_n)$ is the space of...
I am think what is the structure of generated ##\sigma##-algebra. Let me make it specific. How to represent ##\sigma(\mathscr{A})##, where ##\mathscr{A}## is an algebra. Can I use the elements of ##\mathscr{A}## to represent the element in ##\sigma(\mathscr{A})##?
Suppose ##\mu:\mathcal{F}\rightarrow[0,\infty)## be a countable additive measure on a ##\sigma##-algebra ##\mathcal{F}## over a set ##\Omega##. Take any ##E\subseteq \Omega##. Let ##\mathcal{F}_{E}:=\sigma(\mathcal{F}\cup\{E\})##. Then, PROVE there is a countable additive measure...
I have this question on outer measure from Richard Bass' book, supposed to be an introductory but I am lost:
Prove that ##\mu^*## is an outer measure, given a measure space ##(X, \mathcal A, \mu)## and define
##\mu^*(A) = \inf \{\mu(B) \mid A \subset B, B \in \mathcal A\}##
for all subsets...
I am working on this problem on measure theory like this:
Suppose ##X## is the set of real numbers, ##\mathcal B## is the Borel ##\sigma##-algebra, and ##m## and ##n## are two measures on ##(X, \mathcal B)## such that ##m((a, b))=n((a, b))< \infty## whenever ##−\infty<a<b<\infty##. Prove that...
I am working on a problem like this:
Suppose ##\mathscr A_1 \subset \mathscr A_2 \subset \ldots## are sigma-algebras consisting of subsets of a set ##X##. Give an example that ##\bigcup_{i=1}^{\infty} \mathscr A_i## is not sigma-algebra.
I was told to work along finite sigma-algebras on...
1. Are uncountable unions of sigma algebras on a set X still a sigma algebra on X?
2. Are uncountable intersections of sigma algebras on a set X still a sigma algebra on X? (I think this statement is required to show the existence of sigma algebra generated by a set)
3. If 2 is true, can we...
Hey! :o
What book would you recommend me to read about measure theory and especially the following:
Measure and outer meansure, Borel sets, the outer Lebesgue measure.
The Cantor set.
Properties of Lebesgue measure (translation invariance, completeness, regularity, uniqueness).
Steinhaus...
Hi, I'm trying to show that
Givien a probability triplet (\theta,F,P)
with G\in F a sub sigma algebra
E(E(X|G))=E(X)
Now I want to use E(I_hE(X|G))=E(I_hX)
for every h\in G
since that's pretty much all I've for the definition of conditional expected value.
I know this property should use the...
If f=g a.e
f and g are equal except at a measurable set with measure zero
If two functions are not equal a.e what will then the negation be? Will there have to exist a set that is measurable, and f is not equal to g on this set, and this set has not measure 0?
Or will the entire set...
Homework Statement
Let (R,M,m) be Lebesgue measure space in R. Given E contained in R with m(E)>0 show that the set
E-E defined by
E-E:={x in R s.t. exists a, b in E with x= a-b }
contains an interval centered at the origin
Homework Equations
try to prove by contradiction and use...
Let \lambda(A) denote the measure of A and let \lambda^{*}(A) denote the outer measure of A and let \lambda_{*}(A) denote the inner measure of A
Okay so the question is as follows:
Suppose that A \cup B is measurable and that
\lambda(A \cup B) = \lambda^{*}(A) + \lambda^{*}(B) < \infty
Prove...
Hello there.
The stochastic calc book I'm going through ( and others I've seen ) uses the phrase "\mathscr{F}-measurable" random variable Y in the section on measure theory. What does this mean? I'm aware that \mathscr{F} is a \sigma-field over all possible values for the possible values of...
I have a question on sub-additivity. For sets ##E## and ##E_j##, the property states that if
##E=\bigcup_{j=0}^{\infty}E_j##
then
##m^*(E) \leq \sum_{j=0}^{\infty}m^*(E_j)##, where ##m^*(x)## is the external measure of ##x##.
Since ##E\subset \bigcup_{j=0}^{\infty}E_j##, by set...
So the above is the problem and my idea of how to approach it. This problem comes from the section on the Countable Additivity of Integration and the Continuity of Integration, but I was not sure how to incorporate those into the prove, if you even need them for the result.
I had no idea what...
Hi all,
I have a question about measure theory:
Suppose we have probability space (\mathbb{R}^d,\mathcal{B}^d,\mu) where \mathcal{B}^d is Borel sigma algebra.
Suppose we have a function
u:\mathbb{R}^d\times \Theta\rightarrow \mathbb{R} where \Theta\subset\mathbb{R}^l,l<\infty and u is...
This is a simple question.
On pages 5-6 of Measure Theory,Vol 1, Vladimir Bogachev he writes that:
for E=(A\cap S)\cup (B\cap (X-S))
Now, he writes that:
X-E = ((X-A)\cap S) \cup ((X-B)\cap (X-S))
But I don't get this expression, I get another term of ((X-B)\cap (X-A))
i.e, X-E =(...