MHB Confidence intervals and point estimate problems

Click For Summary
To determine the sample size used in a study with a 99% confidence interval of 152 to 158 and a standard deviation of 10, the calculation involves using the formula for the margin of error, which leads to a sample size of approximately 36. For the second problem, the point estimate of the proportion of students responding "no opinion" can be calculated by dividing the number of "no opinion" responses by the total number of responses, resulting in a proportion of 0.05. The discussions highlight the need for clarity in applying statistical formulas to solve confidence interval and point estimate problems. Participants express a desire for guidance on these calculations, emphasizing a common struggle with understanding statistical concepts. Overall, the thread seeks assistance in navigating these statistical challenges.
colle
Messages
1
Reaction score
0
I am lost on how to do these two problems and can't find info on how to solve them anywhere. If anyone can get me on the right track as to how to start, that would be amazing!

1. A 99% confidence interval for a population mean was reported to be 152 to 158. If the standard deviation is 10, what sample size was used in this study?

2. A survey for a sample of 300 students resulted in 175 yes responses, 110 no responses, and 15 no opinions. What is the point estimate of the proportion in the population who respond "no opinion"?
 
Mathematics news on Phys.org
colle said:
I am lost on how to do these two problems and can't find info on how to solve them anywhere. If anyone can get me on the right track as to how to start, that would be amazing!

1. A 99% confidence interval for a population mean was reported to be 152 to 158. If the standard deviation is 10, what sample size was used in this study?

As reported in...

http://mathhelpboards.com/questions-other-sites-52/unsolved-statistics-questions-other-sites-part-ii-1566-post12072.html#post12072

... is [approximately] $ \text{erfc}\ (x) = .01$ for $x \sim 1.8$ so that is $\displaystyle \frac{10}{\sqrt{n}} = \frac{5}{3} \implies n=36$... Kind regards $\chi$ $\sigma$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K