A Confused about going from relativistic to non-relativistic Hamilonian

Malamala
Messages
345
Reaction score
28
Hello! My question is related to going from Eq. 32 to Eq. 33 in this paper (however I have seen this in other papers, too). In summary, starting with:

$$H \propto \bar{e}\gamma_\mu\gamma_5 e \bar{q}\gamma^\mu q$$
where we have the gamma matrices, e is the electron field and q is the quark/nucleon field, if we assume the nucleus is non-relativistic we end up with:

$$H \propto \gamma_5\rho(r)$$
where ##\rho(r)## is the nuclear density and this is a Hamiltonian acting in the electronic sector.

My confusions are:
1. Where did the electronic ##\gamma_\mu## go?
2. (More important) I am not sure I understand the ##\rho(r)## term. Is r referring to the nuclear or electronic position? If it is nuclear, I am confused as, given we integrated out the nuclear part, the nuclear term should be a constant, no? If it refers to electron, I am not sure how to think of the nuclear density as a function of electron coordinates and how does it even end up being a function of the electronic coordiates?

I would really appreciate some help with this. Thank you!
 
Physics news on Phys.org
##\rho=j^{0}=\bar{q}\gamma^0 q=q^{\dagger} q##. In the non-relativistic limit, the dominating term is indeed the Coulomb-like interaction.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top