I Confused about the spectrum of an observable

nomadreid
Gold Member
Messages
1,750
Reaction score
243
TL;DR Summary
Eigenvalues of an observable are probability amplitudes but also stated to be measurement values. What am I missing?
This is a very elementary question, from the beginnings of quantum mechanics.

For simplicity, I refer to a finite case with pure states.

If I understand correctly, the spectrum of an observable is the collection of eigenvalues formed by the inner product of states and hence equal to probability amplitudes; they are then associated to the possible values of a measurement.

Hence I am confused by statements such as the following

“Eigenvalues of observables are real and in fact are possible outcomes of measurements of a given observable.” (https://www.quantiki.org/wiki/observables-and-measurements, but not the only example.)

How can the square roots of probabilities, which are less than one, be values of measurements (which can be greater than one)?
 
Physics news on Phys.org
Eigenvalues are not the same as probability amplitudes. The wave function that gives the prob. amplitudes is one representation of the eigenstate, and it can be either a position or momentum representation.
 
nomadreid said:
Summary:: Eigenvalues of an observable are probability amplitudes but also stated to be measurement values. What am I missing?

If I understand correctly, the spectrum of an observable is the collection of eigenvalues formed by the inner product of states and hence equal to probability amplitudes
Only the green part of the sentence is required. The possible eigenvalues of the system are determined from the potential independent of the actual state of the system. This is the spectrum.
The result of any measurement will be determined by the actual state of the system. The measurement will yield an eigenvalue. The state vector of the system will predict the probability of that value being measured (i.e if you repeated the measurement on similarly prepared states blah blah) which is given by the inner product of the state vector of the system with the corresponding eigenstate.

.
 
Thank you very much, hutchphd and hilbert2. An explanation similar to the last two sentences of hutchphd's explanation apparently was picked up by me somewhere and morphed into the version I posted. This clears it up.
 
nomadreid said:
This clears it up.
Good.
May I congratulate you on your Gary Larson cartoon. Perhaps my all-time favorite, and that's a difficult choice.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
12
Views
2K
Replies
8
Views
3K
Replies
29
Views
4K
Replies
24
Views
3K
Back
Top