This is a question that comes from my research. I know next to nothing about topology, so I'm not able to assure myself of the answer. The problem is this: I'm watching an animal move in two dimensions. At three successive points in time I have three positions, (x1,y1), (x2,y2), (x3,y3). But there are three uninteresting degrees of freedom in these numbers: two that say where it all happened and one that gives the angle you're looking at it from. In other words, I am only interested in translation and rotation-invariant aspects of the motion. Thus, the three positions are best understood not as being a point in ℝ^2×ℝ^2×ℝ^2, but in the orbit space ℝ^2×ℝ^2×ℝ^2/E+(2), E+(2) being the group of rigid-body motions in two dimensions, acting uniformly on all three positions, i.e. e in E+(2) acts on ((x1,y1), (x2,y2), (x3,y3)) to produce (e(x1,y1), e(x2,y2), e(x3,y3)).(adsbygoogle = window.adsbygoogle || []).push({});

I want to get three numbers that contain all the rotation and translation-independent information in (x1,y1), (x2,y2), (x3,y3). This is easy. I would also like the mapping to be continuous. That is, I would like to have a continuous injection from ℝ^2×ℝ^2×ℝ^2/E+(2) -> ℝ^3. This, I believe, is impossible. Am I right? I have a feeling this is basically Borsuk–Ulam, but like I said, I'm pretty ignorant of topology.

Thanks for any help.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Continuous R^2xR^2xR^2/E^+(2) -> R^3 injection

Loading...

Similar Threads - Continuous R^2xR^2xR^2 injection | Date |
---|---|

I Wedge Product and r-form | Sep 10, 2017 |

A Continuous map from one manifold to another | May 15, 2016 |

Looking for a Theorem of Continuous Functions | Nov 8, 2012 |

Someone explain continuity principle | Aug 29, 2012 |

Suppose that F: Rn -> Rn is continuously differentiable everywhere | Apr 24, 2012 |

**Physics Forums - The Fusion of Science and Community**