Contour Integral Representation of a Function

Click For Summary

Discussion Overview

The discussion centers on deriving a contour integral representation for a holomorphic function within the closed unit disk. Participants explore the application of the residue theorem and the Schwarz Reflection Principle in this context, examining the implications for the integral representation of the function.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a contour integral representation for a holomorphic function, suggesting a specific formula involving the real part of the function and the variable z.
  • Another participant questions the validity of using Cauchy's integral formula with the real part of the function, noting that the conjugate of a holomorphic function is not holomorphic.
  • A different participant claims to have a partial result related to the integral for functions that satisfy the Schwarz Reflection Principle, providing a detailed derivation that includes specific integrals and transformations.
  • The same participant notes that for functions defined under the Schwarz Reflection Principle, the imaginary part of the function at the origin is zero, which may affect the integral representation.
  • Further calculations are presented, showing how the integral simplifies under certain conditions, leading to expressions that relate to the function evaluated at z.

Areas of Agreement / Disagreement

Participants express differing views on the application of certain mathematical principles, particularly regarding the use of the real part of holomorphic functions in contour integrals. There is no consensus on the validity of the approaches discussed, and multiple competing views remain.

Contextual Notes

Some assumptions about the properties of the functions involved, such as holomorphicity and the conditions of the Schwarz Reflection Principle, are critical to the discussion. The implications of these assumptions on the derivations presented are not fully resolved.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
 
  • Like
Likes   Reactions: jbergman, Greg Bernhardt and topsquark
Physics news on Phys.org
Euge said:
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
By residue theorem may we say
\frac{1}{2\pi i}\oint_{|w| = 1} \frac{Re(f(w))}{w}\,\frac{w + z}{w - z}\, dw
=\frac{1}{2\pi i}\oint_{|w| = 1} [ \frac{2Re(f(w))}{w-z}-\frac{Re(f(w))}{w} ]\, dw
=2Re(f(z))-Re(f(0))
I have no idea for going further.
 
Last edited:
  • Like
Likes   Reactions: topsquark
Not sure you can use Cauchy's integral formula with ##Re (f(w)) = \frac{1}{2} (f(w) + \overline{f (w)})## because ##\overline{f (w)}## is not holomorphic.
 
I have partial result, in that I might have proved the integral for functions specified in the Schwarz Reflection Principle.

--------

Schwarz Reflection Principle:​


Let ##D## be an open domain in the complex plane who's reflection about the real axis is symmetric. Define ##D^+ = \{ z \in D : Im(z) >0 \}##. Suppose that ##f## is an analytic function which is defined in ##D^+##. Further suppose that ##f## extends to a continuous function on the real axis, and takes on real values on the real axis. Then ##f## can be extended to an analytic function on ##D## by the formula

$$
f(\overline{z}) = \overline{f(z)} .
$$

and the values for ##z## reflected across the real axis are the reflections of ##f(z)## across the real axis.
--------

We assume that ##D## contains the disk ##\overline{\mathbb{D}} = \{ z \in \mathbb{C} : |z| \leq 1 \}##.

In the following we only consider functions as described above. First note: ##Im (f(0)) =0##.

Now

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + \overline{f (e^{i \theta})}] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + f (e^{-i \theta})] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} \left[ f (e^{i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + f (e^{-i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} f (e^{i \theta}) \left[ \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + \dfrac{e^{-i \theta} + z}{e^{-i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} + \dfrac{1+wz}{1-wz} \right] dw \quad (*)
\nonumber
\end{align}

First, using ##(*)## when we have ##z=0##:

$$
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+0}{w-0} dw = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} dw = f(0) .
$$

Now take ##z \not=0##. Using ##(*)##,

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} - \dfrac{w+z^{-1}}{w-z^{-1}} \right] dw
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} f(w) \left[ \dfrac{2}{w-z} - \frac{1}{w} - \dfrac{2}{w-z^{-1}} + \frac{1}{w} \right] dw
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w-z}dw = f(z) .
\nonumber
\end{align}
 
Last edited:
Let ##|z| < 1##. Cauchy's integral formula gives ##f(z) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w - z}\, dw##. In particular, ##f(0) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w}\, dw##. For all ##w## on the unit circle, ##w\overline{w} = 1##. Hence ##\overline{f(0)} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{w} dw##, and
\begin{align*}
f(z) + \overline{f(0)} &= \frac{1}{2\pi i} \oint_{|w| = 1} \frac{w(f(w) + \overline{f(w)}) - z\overline{f(w)}}{w(w-z)} \, dw\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw - \frac{z}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{(w - z)}\, \frac{dw}{w}\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{ \oint_{|w| = 1} \frac{f(w)}{(\bar{w} - z)}\, \frac{dw}{w}}\\
&=\frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{\oint_{|w| = 1} \frac{f(w)}{(1 - zw)}\, dw}\\
&= \frac{2}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w-z}\, dw
\end{align*}
where the last equality follows from Cauchy's theorem (the function ##w\mapsto f(w)/(1 - zw)## is holomorphic inside and on the unit circle for ##|z| < 1##). Since ##z## was arbitrary it follows that $$\operatorname{Re}(f(0)) = \frac{f(0) + \overline{f(0)}}{2} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\, dw$$yielding $$f(z) - i\operatorname{Im}(f(0)) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\left[\frac{2w}{w - z} - 1\right]\, dw = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w} \frac{w + z}{w - z}\, dw$$which is equivalent to the desired result.
 
  • Like
Likes   Reactions: julian and anuttarasammyak

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K