POTW Contour Integral Representation of a Function

Click For Summary
The discussion focuses on deriving the integral representation of a holomorphic function f within the closed unit disk. It demonstrates that the integral representation can be expressed as a combination of real and imaginary parts of f, specifically involving the residue theorem and the Schwarz Reflection Principle. The derivation leads to the conclusion that the integral evaluates to f(z) for |z| < 1, confirming the relationship between the function and its boundary values. The discussion also highlights the challenge of using Cauchy's integral formula due to the non-holomorphic nature of the conjugate function. Overall, the thread provides a detailed exploration of complex analysis techniques applied to holomorphic functions.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
 
  • Like
Likes jbergman, Greg Bernhardt and topsquark
Physics news on Phys.org
Euge said:
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
By residue theorem may we say
\frac{1}{2\pi i}\oint_{|w| = 1} \frac{Re(f(w))}{w}\,\frac{w + z}{w - z}\, dw
=\frac{1}{2\pi i}\oint_{|w| = 1} [ \frac{2Re(f(w))}{w-z}-\frac{Re(f(w))}{w} ]\, dw
=2Re(f(z))-Re(f(0))
I have no idea for going further.
 
Last edited:
Not sure you can use Cauchy's integral formula with ##Re (f(w)) = \frac{1}{2} (f(w) + \overline{f (w)})## because ##\overline{f (w)}## is not holomorphic.
 
I have partial result, in that I might have proved the integral for functions specified in the Schwarz Reflection Principle.

--------

Schwarz Reflection Principle:​


Let ##D## be an open domain in the complex plane who's reflection about the real axis is symmetric. Define ##D^+ = \{ z \in D : Im(z) >0 \}##. Suppose that ##f## is an analytic function which is defined in ##D^+##. Further suppose that ##f## extends to a continuous function on the real axis, and takes on real values on the real axis. Then ##f## can be extended to an analytic function on ##D## by the formula

$$
f(\overline{z}) = \overline{f(z)} .
$$

and the values for ##z## reflected across the real axis are the reflections of ##f(z)## across the real axis.
--------

We assume that ##D## contains the disk ##\overline{\mathbb{D}} = \{ z \in \mathbb{C} : |z| \leq 1 \}##.

In the following we only consider functions as described above. First note: ##Im (f(0)) =0##.

Now

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + \overline{f (e^{i \theta})}] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + f (e^{-i \theta})] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} \left[ f (e^{i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + f (e^{-i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} f (e^{i \theta}) \left[ \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + \dfrac{e^{-i \theta} + z}{e^{-i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} + \dfrac{1+wz}{1-wz} \right] dw \quad (*)
\nonumber
\end{align}

First, using ##(*)## when we have ##z=0##:

$$
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+0}{w-0} dw = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} dw = f(0) .
$$

Now take ##z \not=0##. Using ##(*)##,

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} - \dfrac{w+z^{-1}}{w-z^{-1}} \right] dw
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} f(w) \left[ \dfrac{2}{w-z} - \frac{1}{w} - \dfrac{2}{w-z^{-1}} + \frac{1}{w} \right] dw
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w-z}dw = f(z) .
\nonumber
\end{align}
 
Last edited:
Let ##|z| < 1##. Cauchy's integral formula gives ##f(z) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w - z}\, dw##. In particular, ##f(0) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w}\, dw##. For all ##w## on the unit circle, ##w\overline{w} = 1##. Hence ##\overline{f(0)} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{w} dw##, and
\begin{align*}
f(z) + \overline{f(0)} &= \frac{1}{2\pi i} \oint_{|w| = 1} \frac{w(f(w) + \overline{f(w)}) - z\overline{f(w)}}{w(w-z)} \, dw\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw - \frac{z}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{(w - z)}\, \frac{dw}{w}\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{ \oint_{|w| = 1} \frac{f(w)}{(\bar{w} - z)}\, \frac{dw}{w}}\\
&=\frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{\oint_{|w| = 1} \frac{f(w)}{(1 - zw)}\, dw}\\
&= \frac{2}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w-z}\, dw
\end{align*}
where the last equality follows from Cauchy's theorem (the function ##w\mapsto f(w)/(1 - zw)## is holomorphic inside and on the unit circle for ##|z| < 1##). Since ##z## was arbitrary it follows that $$\operatorname{Re}(f(0)) = \frac{f(0) + \overline{f(0)}}{2} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\, dw$$yielding $$f(z) - i\operatorname{Im}(f(0)) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\left[\frac{2w}{w - z} - 1\right]\, dw = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w} \frac{w + z}{w - z}\, dw$$which is equivalent to the desired result.
 
  • Like
Likes julian and anuttarasammyak

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
4K
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K