Contour Integral Representation of a Function

Click For Summary
SUMMARY

The discussion focuses on deriving the contour integral representation of a holomorphic function \( f \) within the closed unit disk \( \overline{\mathbb{D}} \). The integral representation is given by $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for \( |z| < 1 \). The derivation utilizes the residue theorem and the Schwarz Reflection Principle, confirming that the integral representation holds under the specified conditions. The discussion concludes with the assertion that the integral representation is valid for holomorphic functions defined in the specified domain.

PREREQUISITES
  • Understanding of holomorphic functions and their properties.
  • Familiarity with contour integration and the residue theorem.
  • Knowledge of the Schwarz Reflection Principle in complex analysis.
  • Proficiency in manipulating complex integrals and real parts of complex functions.
NEXT STEPS
  • Study the application of the residue theorem in complex analysis.
  • Explore the implications of the Schwarz Reflection Principle on analytic functions.
  • Learn about Cauchy's integral formula and its applications in deriving function representations.
  • Investigate further examples of contour integrals involving holomorphic functions.
USEFUL FOR

Mathematicians, particularly those specializing in complex analysis, students studying advanced calculus, and researchers exploring properties of holomorphic functions and contour integrals.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
 
  • Like
Likes   Reactions: jbergman, Greg Bernhardt and topsquark
Physics news on Phys.org
Euge said:
Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw + i\operatorname{Im}(f(0))$$ for ##|z| < 1##.
By residue theorem may we say
\frac{1}{2\pi i}\oint_{|w| = 1} \frac{Re(f(w))}{w}\,\frac{w + z}{w - z}\, dw
=\frac{1}{2\pi i}\oint_{|w| = 1} [ \frac{2Re(f(w))}{w-z}-\frac{Re(f(w))}{w} ]\, dw
=2Re(f(z))-Re(f(0))
I have no idea for going further.
 
Last edited:
  • Like
Likes   Reactions: topsquark
Not sure you can use Cauchy's integral formula with ##Re (f(w)) = \frac{1}{2} (f(w) + \overline{f (w)})## because ##\overline{f (w)}## is not holomorphic.
 
I have partial result, in that I might have proved the integral for functions specified in the Schwarz Reflection Principle.

--------

Schwarz Reflection Principle:​


Let ##D## be an open domain in the complex plane who's reflection about the real axis is symmetric. Define ##D^+ = \{ z \in D : Im(z) >0 \}##. Suppose that ##f## is an analytic function which is defined in ##D^+##. Further suppose that ##f## extends to a continuous function on the real axis, and takes on real values on the real axis. Then ##f## can be extended to an analytic function on ##D## by the formula

$$
f(\overline{z}) = \overline{f(z)} .
$$

and the values for ##z## reflected across the real axis are the reflections of ##f(z)## across the real axis.
--------

We assume that ##D## contains the disk ##\overline{\mathbb{D}} = \{ z \in \mathbb{C} : |z| \leq 1 \}##.

In the following we only consider functions as described above. First note: ##Im (f(0)) =0##.

Now

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + \overline{f (e^{i \theta})}] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{2 \pi i} \int_0^{2 \pi} \frac{1}{2} [f (e^{i \theta}) + f (e^{-i \theta})] \dfrac{e^{i \theta} + z}{e^{i \theta} - z} i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} \left[ f (e^{i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + f (e^{-i \theta}) \dfrac{e^{i \theta} + z}{e^{i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \int_0^{2 \pi} f (e^{i \theta}) \left[ \dfrac{e^{i \theta} + z}{e^{i \theta} - z} + \dfrac{e^{-i \theta} + z}{e^{-i \theta} - z} \right] i d \theta
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} + \dfrac{1+wz}{1-wz} \right] dw \quad (*)
\nonumber
\end{align}

First, using ##(*)## when we have ##z=0##:

$$
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+0}{w-0} dw = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} dw = f(0) .
$$

Now take ##z \not=0##. Using ##(*)##,

\begin{align}
\frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{Re (f(w))}{w} \dfrac{w+z}{w-z} dw & = \frac{1}{4 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w} \left[ \dfrac{w+z}{w-z} - \dfrac{w+z^{-1}}{w-z^{-1}} \right] dw
\nonumber \\
& = \frac{1}{4 \pi i} \oint_{|w|=1} f(w) \left[ \dfrac{2}{w-z} - \frac{1}{w} - \dfrac{2}{w-z^{-1}} + \frac{1}{w} \right] dw
\nonumber \\
& = \frac{1}{2 \pi i} \oint_{|w|=1} \dfrac{f(w)}{w-z}dw = f(z) .
\nonumber
\end{align}
 
Last edited:
Let ##|z| < 1##. Cauchy's integral formula gives ##f(z) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w - z}\, dw##. In particular, ##f(0) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{f(w)}{w}\, dw##. For all ##w## on the unit circle, ##w\overline{w} = 1##. Hence ##\overline{f(0)} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{w} dw##, and
\begin{align*}
f(z) + \overline{f(0)} &= \frac{1}{2\pi i} \oint_{|w| = 1} \frac{w(f(w) + \overline{f(w)}) - z\overline{f(w)}}{w(w-z)} \, dw\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw - \frac{z}{2\pi i} \oint_{|w| = 1} \frac{\overline{f(w)}}{(w - z)}\, \frac{dw}{w}\\
&= \frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{ \oint_{|w| = 1} \frac{f(w)}{(\bar{w} - z)}\, \frac{dw}{w}}\\
&=\frac{2}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w - z}\, dw + \frac{z}{2\pi i}\overline{\oint_{|w| = 1} \frac{f(w)}{(1 - zw)}\, dw}\\
&= \frac{2}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w-z}\, dw
\end{align*}
where the last equality follows from Cauchy's theorem (the function ##w\mapsto f(w)/(1 - zw)## is holomorphic inside and on the unit circle for ##|z| < 1##). Since ##z## was arbitrary it follows that $$\operatorname{Re}(f(0)) = \frac{f(0) + \overline{f(0)}}{2} = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\, dw$$yielding $$f(z) - i\operatorname{Im}(f(0)) = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\left[\frac{2w}{w - z} - 1\right]\, dw = \frac{1}{2\pi i} \oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w} \frac{w + z}{w - z}\, dw$$which is equivalent to the desired result.
 
  • Like
Likes   Reactions: julian and anuttarasammyak

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K