I(k_x, k_y) = \int_{0}^{R} \int_{0}^{2\pi} J_{m-1}(\alpha \rho) \sin((m + 1) \phi) e^{j\rho(k_x \cos\phi + k_y \sin\phi)} \rho d\rho d\phi
Is there any way to do it? J is the Bessel function of the first kind. I thought of partially doing only the phi integral as \int_{0}^{2\pi} \sin((m +...
Summary:: I'm solving an exercise.
I have the following center of gravity problem:
Having the function Y(x)=96,4*x(100-x) cm, where X is the horizontal axis and Y is the vertical axis, ranged between the interval (0, 93,7) cm. Determine:
a) Area bounded by this function, axis X and the line...
Here is a tough integral that I'm not quite sure how to do. It's the Gaussian average:
$$
I = \int_{-\infty}^{\infty}dx\, \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}\sqrt{1+a^2 \sinh^2(b x)}
$$
for ##0 < a < 1## and ##b > 0##. Obviously the integral can be done for ##a = 0## (or ##b=0##) and for...
Summary: Ιntegral calculation : (sin(x))^4 * (cos(x))^6
Hi all,
I tried to solve it, but I got stuck. An advice from my professor is to set: x=arctan(t)
Τhanks.
In a certain derivation, the author begins with
$${g(-t)=}\frac 1 {2\pi}\int_{-\infty}^\infty {G(\omega)}e^{-i\omega t}d\omega$$
and then says he will replace ##t## with ##\omega## and ##\omega## with ##t##. He then writes
$${g(-\omega)=}\frac 1 {2\pi}\int_{-\infty}^\infty {G(t)}e^{-it\omega...
For example integral of f(x)=sqrt(1-x^2) from 0 to 1 is a problem, since the derivative of the function is -x/sqrt(1-x^2) so putting in 1 in the place of x ruins the whole thing.
In Paul Nahin's book Inside Interesting Integrals, on pg. 113, he writes the following line (actually he wrote a more complicated function inside the integral where I have simply written f(x))...
## \int_0^\phi \frac {d} {dx} f(x) dx =...
Homework Statement
Hello, I am currently working on photon diffusion equation and trying to do it without using Monte Carlo technique.
Homework Equations
Starting equation integrated over t:
int(c*exp(-r^2/(4*D*c*t)-a*c*t)/(4*Pi*D*c*t)^(3/2), t = 0 .. infinity) (1)
Result...
How can I calculate ∂/∂t(∫01 f(x,t,H(x-t)*a)dt), where a is a constant, H(x) is the Heaviside step function, and f is
I know it must have something to do with distributions and the derivative of the Heaviside function which is ∂/∂t(H(t))=δ(x)... but I don't understand how can I work with the...
I need to make an integral to fine the speed of the earth. Say the radius is 6378137 meters. How would I account for things closer to the axis that have a radius of 0.0001 meters? I don't think I can just take the speed at the radius. So I found that the earth rotates at 6.963448857E-4 revs/min...
I am reading "Inside Interesting Integrals" by Paul Nahin. Around pg. 59, he goes through a lengthy explanation of how to do the definite integral from 0 to infinity of ∫1/(x4+1)dx. However, he then simply writes down that this integral is equal to ∫x2/(x4+1)dx with the same limits. Now, it's...
Hello.
I ask for solution help from the integral below, where y and x represent angles in a metric of a spherical, 2-D surface. He was studying how to obtain the geodesic curves on the spherical surface, the sphere of radius r = 1, to simplify. The integral is the end result. It is enough, now...
Homework Statement
For
$$f_x(x)=4x^3 ; 0 \leq x \leq 1$$
Find the PDF for $$ Y < y=x^2$$
The Attempt at a Solution
So, we take the domain on x to be:
$$0\leq x \leq \sqrt y$$
and integrate:
$$ \int_0^{\sqrt y} f_x(x) dx = \int_0^{\sqrt y} 4x^3 dx$$
Do we integrate with respect to x or y...
Extremely quick question:
According to http://mathworld.wolfram.com/PrimeNumberTheorem.html, the Riemann Hypothesis is equivalent to
|Li(x)-π(x)|≤ c(√x)*ln(x) for some constant c.
Am I correct that then c goes to 0 as x goes to infinity?
Does any expression exist (yet) for c?
Thanks.
Homework Statement
I am computing the auto correlation and spectral density functions of the following signal:
$$f(t)=Ae^{-ct}sin(\omega t)$$
$$AutoCorrelation = R_x(\tau) = \int_{-\infty}^{\infty} f(x)f(x+\tau) \cdot \frac{1}{T} dx$$
$$SpectralDensity = S_x(\omega) = \frac{1}{2\pi}...
Homework Statement
A rod of charged -Q is curved from the x-axis to angle ##\alpha##. The rod is a distance R from the origin (I will have a picture uploaded). What is the electric field of the charge in terms of it's x and y components at the origin? k is ##\frac {1} {4\pi \epsilon_0}##...
This question is about the general 1 loop correction to the propagator in QFT (this is actually not important for this question). Let's say we have an integral over an integration variable x, and this x ranges from ##-\infty## to ##\infty##. If we look at this integration contour in the complex...
I have a few of integration equations and need to convert it into Python. The problem is when I tried to plot a graph according to the equation, some of the plot is not same with the original one.
The first equation is the error probability of authentication in normal operation:
cond equation...
If I have a limit of a series then how can I convert it into integral. I know to convert a sum into an integral there must be Δx multiplied to each term and this must go zero. Can you please explain me the conversion of limit of series (normal series with no Δx) into an integral.
Thank you.
Homework Statement
(FYI It's from an Real Analysis class.)
Show that $$\int_{0}^{\infty} (sin^2(t) / t^2) dt $$ is convergent.
Homework Equations
I know that for an integral to be convergent, it means that :
$$\lim_{x\to\infty} \int_{0}^{x} (sin^2(t) / t^2) dt$$ is finite.
I can also use...
Homework Statement
You are given the function
f(x)=3x^2-4x-8
a) Find the values of a.
Explain the answers using the function.
Homework Equations
The Attempt at a Solution
a^3-2*a^2-8*a=0
a=-2 v a=0 v a=4
I found the answers, but I don't know how to explain my answers by using the...
In this super short video of the derivation of the relativistic kinetic energy, , I'm just stuck on one thing. Around 1:00 minute in, the constants of integration change from 0 to pv when the integration changes from dx to dv. Where does the pv come from? Thanks!
Hello everyone
Can someone help me out solving this integral:
\begin{equation}
S_T(\omega)=\frac{2k_BT^2g}{4\pi^2c^2}\int_0^{\infty}\frac{sin^2(kl)}{k^2l^2}\frac{k^2}{D^2k^4+\omega^2}dk
\end{equation}
Where $$D=g/c$$
According to this paper https://doi.org/10.1103/PhysRevB.13.556. The...
Homework Statement
Show that
\int_{A} 1 = \int_{T(A)} 1
given A is an arbitrary region in R^n (not necessarily a rectangle) and T is a translation in R^n.
Homework Equations
Normally we find Riemann integrals by creating a rectangle R that includes A and set the function to be zero when x...
Homework Statement
We have the equation for gravity due to the acceleration a = -GM/r2, calculate velocity and position dependent on time and show that v/x = √2GM/r03⋅(r/r0-1)
Homework Equations
x(t = 0) = x0 and v(t = 0) = 0
The Attempt at a Solution
v = -GM∫1/r2 dt
v = dr/dt
v2 = -GM∫1/r2...
Hi all, I am new to the Maplesoft software and have been experiencing trouble computing numerical integrals.
I defined a few mathematical functions in terms of a few variables like so:
I then used "subs" to input values to anything that isn't already a defined constant (like ##\hbar,\pi## and...