1. ### A Spectral domain double integral with singularities

The integral looks like Y_{mut, mn} = -j^{m+n}nm \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{2 ab (k^2 - k_x^2) \sin^2(\frac{k_yb}{2}) \cos^2(\frac{k_xa}{2})}{\omega \mu k_z (\frac{k_yb}{2})^2 [(n\pi)^2 - (k_xa)^2][(m\pi)^2 - (k_xa)^2]} dk_x dk_y Here, k_z = -1j...
2. ### A Spatial Fourier transform of a Bessel function multiplied with a sinusoidal function

I(k_x, k_y) = \int_{0}^{R} \int_{0}^{2\pi} J_{m-1}(\alpha \rho) \sin((m + 1) \phi) e^{j\rho(k_x \cos\phi + k_y \sin\phi)} \rho d\rho d\phi Is there any way to do it? J is the Bessel function of the first kind. I thought of partially doing only the phi integral as \int_{0}^{2\pi} \sin((m +...
3. ### Determining a centroid

Summary:: I'm solving an exercise. I have the following center of gravity problem: Having the function Y(x)=96,4*x(100-x) cm, where X is the horizontal axis and Y is the vertical axis, ranged between the interval (0, 93,7) cm. Determine: a) Area bounded by this function, axis X and the line...
4. ### A Can this difficult Gaussian integral be done analytically?

Here is a tough integral that I'm not quite sure how to do. It's the Gaussian average: $$I = \int_{-\infty}^{\infty}dx\, \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}\sqrt{1+a^2 \sinh^2(b x)}$$ for ##0 < a < 1## and ##b > 0##. Obviously the integral can be done for ##a = 0## (or ##b=0##) and for...
5. ### Find the volume of the solid formed by the rotation around the y=0

Hi, I find this.... Please tell me your opinion on this. Thanks.
6. ### Ιntegral calculation : (sin(x))^4 * (cos(x))^6

Summary: Ιntegral calculation : (sin(x))^4 * (cos(x))^6 Hi all, I tried to solve it, but I got stuck. An advice from my professor is to set: x=arctan(t) Τhanks.
7. ### Differential Integration Problem

Attempt at solution: Writing the chain rule for ## E(V,T) ##: ## dE = \frac{\partial E}{\partial T}dT + \frac{\partial E}{\partial V}dV ## Then, integrating the differential: ## \int{ dE } = \int{ \frac{\partial E}{\partial T}dT } + \int{ \frac{\partial E}{\partial V}dV } ## If I put the...

19. ### Electric field of a curved rod

Homework Statement A rod of charged -Q is curved from the x-axis to angle ##\alpha##. The rod is a distance R from the origin (I will have a picture uploaded). What is the electric field of the charge in terms of it's x and y components at the origin? k is ##\frac {1} {4\pi \epsilon_0}##...
20. ### I Integration being unchanged after rotation

This question is about the general 1 loop correction to the propagator in QFT (this is actually not important for this question). Let's say we have an integral over an integration variable x, and this x ranges from ##-\infty## to ##\infty##. If we look at this integration contour in the complex...
21. ### Python How to plot integration equation using Python?

I have a few of integration equations and need to convert it into Python. The problem is when I tried to plot a graph according to the equation, some of the plot is not same with the original one. The first equation is the error probability of authentication in normal operation: cond equation...
22. ### ##\int (\sin x + 2\cos x)^3\,dx##

Homework Statement $$\int (sinx + 2cos x)^3dx$$ Homework Equations The Attempt at a Solution $$\int (sinx + 2cos x)^3dx$$ $$\int (sinx + 2cos x)((sinx + 2cos x)^2dx)$$ $$\int (sinx + 2cos x)(1 + 3cos^2x+2sin2x)dx$$ How to do this in simpler way?
23. ### I How to convert the limit of a series into an integral?

If I have a limit of a series then how can I convert it into integral. I know to convert a sum into an integral there must be Δx multiplied to each term and this must go zero. Can you please explain me the conversion of limit of series (normal series with no Δx) into an integral. Thank you.
24. ### Show that the integral converges

Homework Statement (FYI It's from an Real Analysis class.) Show that $$\int_{0}^{\infty} (sin^2(t) / t^2) dt$$ is convergent. Homework Equations I know that for an integral to be convergent, it means that : $$\lim_{x\to\infty} \int_{0}^{x} (sin^2(t) / t^2) dt$$ is finite. I can also use...
25. ### I need some help with integrals

Homework Statement You are given the function f(x)=3x^2-4x-8 a) Find the values of a. Explain the answers using the function. Homework Equations The Attempt at a Solution a^3-2*a^2-8*a=0 a=-2 v a=0 v a=4 I found the answers, but I don't know how to explain my answers by using the...
26. ### B Change of constants of integration for relativistic energy

In this super short video of the derivation of the relativistic kinetic energy, , I'm just stuck on one thing. Around 1:00 minute in, the constants of integration change from 0 to pv when the integration changes from dx to dv. Where does the pv come from? Thanks!
27. ### A How to solve this trigonometric integral?

Hello everyone Can someone help me out solving this integral: \begin{equation} S_T(\omega)=\frac{2k_BT^2g}{4\pi^2c^2}\int_0^{\infty}\frac{sin^2(kl)}{k^2l^2}\frac{k^2}{D^2k^4+\omega^2}dk \end{equation} Where $$D=g/c$$ According to this paper https://doi.org/10.1103/PhysRevB.13.556. The...
28. ### A simple case of translation invariance of Riemann integrals

Homework Statement Show that \int_{A} 1 = \int_{T(A)} 1 given A is an arbitrary region in R^n (not necessarily a rectangle) and T is a translation in R^n. Homework Equations Normally we find Riemann integrals by creating a rectangle R that includes A and set the function to be zero when x...
29. ### Time derivative of gravity due to acceleration

Homework Statement We have the equation for gravity due to the acceleration a = -GM/r2, calculate velocity and position dependent on time and show that v/x = √2GM/r03⋅(r/r0-1) Homework Equations x(t = 0) = x0 and v(t = 0) = 0 The Attempt at a Solution v = -GM∫1/r2 dt v = dr/dt v2 = -GM∫1/r2...
30. ### Maple Computing Numerical Integrals with Maple

Hi all, I am new to the Maplesoft software and have been experiencing trouble computing numerical integrals. I defined a few mathematical functions in terms of a few variables like so: I then used "subs" to input values to anything that isn't already a defined constant (like ##\hbar,\pi## and...