# integral Definition and Topics - 185 Discussions

In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with differentiation, integration is a fundamental, essential operation of calculus, and serves as a tool to solve problems in mathematics and physics involving the area of an arbitrary shape, the length of a curve, and the volume of a solid, among others.
The integrals enumerated here are those termed definite integrals, which can be interpreted formally as the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function. In this case, they are called indefinite integrals. The fundamental theorem of calculus relates definite integrals with differentiation and provides a method to compute the definite integral of a function when its antiderivative is known.
Although methods of calculating areas and volumes dated from ancient Greek mathematics, the principles of integration were formulated independently by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century, who thought of the area under a curve as an infinite sum of rectangles of infinitesimal width. Bernhard Riemann later gave a rigorous definition of integrals, which is based on a limiting procedure that approximates the area of a curvilinear region by breaking the region into thin vertical slabs.
Integrals may be generalized depending on the type of the function as well as the domain over which the integration is performed. For example, a line integral is defined for functions of two or more variables, and the interval of integration is replaced by a curve connecting the two endpoints of the interval. In a surface integral, the curve is replaced by a piece of a surface in three-dimensional space.

View More On Wikipedia.org
1. ### I Has the Fermi-Dirac Integral been solved?

hi guys I have a question about whether or not the Fermi-Dirac Integral has Been solved, because i found a formula on Wikipedia that relates the Fermi-Dirac integral with the polylogarithm function: $$F_{j}(x) = -Li_{j+1}(-e^{x})$$ and in some recent papers they claim that no analytical...
2. ### I Index and bound shift in converting a sum into integral

Considering the below equality (or equivalency), could someone please explain how the bounds and indices are shifted? $$\sum_{i=2}^{k}(h_i/f_{i-1})=\int_{1}^{k}(h(i)/f(i))di$$

17. ### Infinite series to calculate integrals

For example integral of f(x)=sqrt(1-x^2) from 0 to 1 is a problem, since the derivative of the function is -x/sqrt(1-x^2) so putting in 1 in the place of x ruins the whole thing.
18. ### B Justification for cancelling dx in an integral

In Paul Nahin's book Inside Interesting Integrals, on pg. 113, he writes the following line (actually he wrote a more complicated function inside the integral where I have simply written f(x))... ## \int_0^\phi \frac {d} {dx} f(x) dx =...
19. ### Analytical solution of the Photon Diffusion Equation

Homework Statement Hello, I am currently working on photon diffusion equation and trying to do it without using Monte Carlo technique. Homework Equations Starting equation integrated over t: int(c*exp(-r^2/(4*D*c*t)-a*c*t)/(4*Pi*D*c*t)^(3/2), t = 0 .. infinity) (1) Result...
20. ### A Multi-variable function depending on the Heaviside function

How can I calculate ∂/∂t(∫01 f(x,t,H(x-t)*a)dt), where a is a constant, H(x) is the Heaviside step function, and f is I know it must have something to do with distributions and the derivative of the Heaviside function which is ∂/∂t(H(t))=δ(x)... but I don't understand how can I work with the...
21. ### Integral for the linear speed of the Earth

I need to make an integral to fine the speed of the earth. Say the radius is 6378137 meters. How would I account for things closer to the axis that have a radius of 0.0001 meters? I don't think I can just take the speed at the radius. So I found that the earth rotates at 6.963448857E-4 revs/min...
22. ### B Can you help me see why these integrals are the same?

I am reading "Inside Interesting Integrals" by Paul Nahin. Around pg. 59, he goes through a lengthy explanation of how to do the definite integral from 0 to infinity of ∫1/(x4+1)dx. However, he then simply writes down that this integral is equal to ∫x2/(x4+1)dx with the same limits. Now, it's...
23. ### B Tips for solving an Integral (angles in a metric of a spherical, 2-D surface)

Hello. I ask for solution help from the integral below, where y and x represent angles in a metric of a spherical, 2-D surface. He was studying how to obtain the geodesic curves on the spherical surface, the sphere of radius r = 1, to simplify. The integral is the end result. It is enough, now...
24. ### Find the PDF in terms of another variable

Homework Statement For $$f_x(x)=4x^3 ; 0 \leq x \leq 1$$ Find the PDF for $$Y < y=x^2$$ The Attempt at a Solution So, we take the domain on x to be: $$0\leq x \leq \sqrt y$$ and integrate: $$\int_0^{\sqrt y} f_x(x) dx = \int_0^{\sqrt y} 4x^3 dx$$ Do we integrate with respect to x or y...
25. ### I |Li(x) - pi(x)| goes to 0 under RH?

Extremely quick question: According to http://mathworld.wolfram.com/PrimeNumberTheorem.html, the Riemann Hypothesis is equivalent to |Li(x)-π(x)|≤ c(√x)*ln(x) for some constant c. Am I correct that then c goes to 0 as x goes to infinity? Does any expression exist (yet) for c? Thanks.