MHB Convergence/Divergence of Series 2446

  • Thread starter Thread starter Chipset3600
  • Start date Start date
  • Tags Tags
    Series
Click For Summary
The discussion focuses on determining the convergence or divergence of the series presented in Problem 2446 from B. Demidovitch's analysis textbook. Participants suggest using the ratio test, emphasizing the need to identify the general term, a_n, of the series. The general term is derived from a difference equation, leading to the conclusion that the limit of the ratio of consecutive terms approaches 9/16, which is less than 1. This indicates that the series converges. The conversation highlights the importance of correctly identifying the series' terms to apply convergence tests effectively.
Chipset3600
Messages
79
Reaction score
0
Hello MHB,
How can i study the convergence or divergence of this serie:
From: Problems and Excercises of Analysis Mathematic- B. Demidovitch (nº: 2446):

\frac{2}{1}+\frac{2.5.8}{1.5.9}+\frac{2.5.8.11.14..(6n-7).(6n-4)}{1.5.9.13.17...(8n-11).(8n-7)}+...
 
Physics news on Phys.org
Have you tried the ratio test ?
 
ZaidAlyafey said:
Have you tried the ratio test ?
Is not a geometric serie. How can i use the ratio test in limit without know the a_{}n ?
 
We need to calculate

$$\lim_{n\to \infty}|\frac{a_{n+1}}{a_n}|$$

So what is $a_n$ ?
 
ZaidAlyafey said:
We need to calculate

$$\lim_{n\to \infty}|\frac{a_{n+1}}{a_n}|$$

So what is $a_n$ ?

Don't know how to find this a_n
 
$a_n$ is the general term ,specifically, the term that contains n , can you find it in your series ?

For example

$$S=1+2+3+\cdots +n+\cdots $$

Then $a_n= n$

and

$$S=\sum_{n=1}^{\infty}n$$
 
By the way , I think your series should be

$$ \frac{2}{1}+\frac{2\cdot 5}{1\cdot 5 }+\frac{2\cdot 5 \cdot 8}{1\cdot 5 \cdot 9}+\cdots+\frac{2\cdot 5 \cdot 8 \cdot 11 \cdot 14 \cdots (6n-7).(6n-4)}{1\cdot 5 \cdot 9 \cdot 13 \cdot 17 \cdots (8n-11) \cdot(8n-7)}+\cdots$$
 
ZaidAlyafey said:
By the way , I think your series should be

$$ \frac{2}{1}+\frac{2\cdot 5}{1\cdot 5 }+\frac{2\cdot 5 \cdot 8}{1\cdot 5 \cdot 9}+\cdots+\frac{2\cdot 5 \cdot 8 \cdot 11 \cdot 14 \cdots (6n-7).(6n-4)}{1\cdot 5 \cdot 9 \cdot 13 \cdot 17 \cdots (8n-11) \cdot(8n-7)}+\cdots$$

maybe, but not so in the book :/
 
Chipset3600 said:
maybe, but not so in the book :/

Strange if so .
 
  • #10
Chipset3600 said:
Hello MHB,
How can i study the convergence or divergence of this serie:
From: Problems and Excercises of Analysis Mathematic- B. Demidovitch (nº: 2446):

\frac{2}{1}+\frac{2.5.8}{1.5.9}+\frac{2.5.8.11.14..(6n-7).(6n-4)}{1.5.9.13.17...(8n-11).(8n-7)}+...

It is easy to see that the general term of the series obeys to the difference equation... $\displaystyle a_{n+1} = a_{n}\ \frac{(6 n - 7)\ (6 n - 4)}{(8 n - 11)\ (8 n - 7)}\ (1)$

... so that is...

$\displaystyle \frac {a_{n+1}}{a_{n}} = \frac{(6 n - 7)\ (6 n - 4)}{(8 n - 11)\ (8 n - 7)} = \frac{(6 - \frac{7}{n})\ (6 - \frac{4}{n})}{(8 - \frac{11}{n})\ (8 - \frac{7}{n})}\ (2)$

... and because is...

$\displaystyle \lim_{n \rightarrow \infty} a_{n}=0\ (3)$

... and...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}= \frac{9}{16} < 1\ (4)$

... the series converges...

Kind regards

$\chi$ $\sigma$
 
  • #11
chisigma said:
It is easy to see that the general term of the series obeys to the difference equation... $\displaystyle a_{n+1} = a_{n}\ \frac{(6 n - 7)\ (6 n - 4)}{(8 n - 11)\ (8 n - 7)}\ (1)$

... so that is...

$\displaystyle \frac {a_{n+1}}{a_{n}} = \frac{(6 n - 7)\ (6 n - 4)}{(8 n - 11)\ (8 n - 7)} = \frac{(6 - \frac{7}{n})\ (6 - \frac{4}{n})}{(8 - \frac{11}{n})\ (8 - \frac{7}{n})}\ (2)$

... and because is...

$\displaystyle \lim_{n \rightarrow \infty} a_{n}=0\ (3)$

... and...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}= \frac{9}{16} < 1\ (4)$

... the series converges...

Kind regards

$\chi$ $\sigma$

thank you, I would not get the response so soon!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K