MHB Convergence of Improper Integral with Hyperbolic Functions?

Click For Summary
The discussion focuses on proving the convergence of the improper integral involving hyperbolic functions, specifically $$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx$$ for real numbers $$a$$ and $$b$$ where $$b > |a|$$. The result of the integral is shown to be $$\frac{\pi}{2b}\tan\frac{\pi a}{2b}$$. Participants express appreciation for the clarity and correctness of the proof. The mathematical significance of this result in relation to hyperbolic functions is highlighted. Overall, the thread emphasizes the convergence properties of the integral in question.
DreamWeaver
Messages
297
Reaction score
0
For $$a\, ,b\in\mathbb{R}\,$$ and $$b>|a|\,$$ show that:

$$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx = \frac{\pi}{2b}\tan\frac{\pi a}{2b}$$
 
Mathematics news on Phys.org
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
 
Random Variable said:
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
Very nicely done, Sir! (Heidy)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K