MHB Convergence of Improper Integral with Hyperbolic Functions?

DreamWeaver
Messages
297
Reaction score
0
For $$a\, ,b\in\mathbb{R}\,$$ and $$b>|a|\,$$ show that:

$$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx = \frac{\pi}{2b}\tan\frac{\pi a}{2b}$$
 
Mathematics news on Phys.org
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
 
Random Variable said:
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
Very nicely done, Sir! (Heidy)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top