Convergence of Improper Integral with Hyperbolic Functions?

Click For Summary
SUMMARY

The forum discussion focuses on the convergence of the improper integral involving hyperbolic functions, specifically the integral $$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx$$ for real numbers $$a$$ and $$b$$ where $$b > |a|$$. The conclusion reached is that this integral evaluates to $$\frac{\pi}{2b}\tan\frac{\pi a}{2b}$$. The discussion highlights the mathematical rigor involved in proving this result, showcasing the relationship between hyperbolic functions and their integrals.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with hyperbolic functions, specifically sinh
  • Knowledge of convergence criteria for integrals
  • Basic trigonometric identities related to tangent
NEXT STEPS
  • Study the properties of hyperbolic functions and their integrals
  • Explore convergence tests for improper integrals
  • Learn about the applications of the tangent function in calculus
  • Investigate advanced techniques in integral calculus
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral calculus and the properties of hyperbolic functions.

DreamWeaver
Messages
297
Reaction score
0
For $$a\, ,b\in\mathbb{R}\,$$ and $$b>|a|\,$$ show that:

$$\int_0^{\infty}\frac{\sinh ax}{\sinh bx}\, dx = \frac{\pi}{2b}\tan\frac{\pi a}{2b}$$
 
Physics news on Phys.org
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
 
Random Variable said:
$$ \begin{align} \int_{0}^{\infty} \frac{\sinh ax}{\sinh b x} \ dx &= 2 \int_{0}^{\infty} \frac{\sinh ax}{e^{bx}-e^{-b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \ \frac{e^{- b x}}{1-e^{-2 b x}} \ dx \\ &= 2 \int_{0}^{\infty} \sinh ax \sum_{n=0}^{\infty} e^{-(2n+1)b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{\infty} \sinh ax \ e^{-(2n+1) b x} \ dx \\ &= 2 \sum_{n=0}^{\infty} \frac{a}{(2n+1)^{2} b - t^{2}} \\ &= \frac{\pi}{2 b} \tan \left( \frac{\pi a}{2b}\right) \end{align} $$

where I used the partial fractions expansion of $\tan z$, that is,

$$ \tan z = \sum_{n=0}^{\infty} \frac{8z}{(2n+1)^{2}\pi^{2}-4z^{2}} $$

Partial fractions in complex analysis - Wikipedia, the free encyclopedia
Very nicely done, Sir! (Heidy)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K