Undergrad Coordinate System Transformation: Lowering/Raising Indices Explained

Click For Summary
Lowering and raising indices in tensor calculus is closely linked to coordinate system transformations, particularly in general relativity. In locally flat coordinate systems, the components of the Riemann tensor exhibit simpler forms, facilitating easier calculations. Schutz emphasizes this approach to derive straightforward formulas for Riemann tensor components using metric components instead of Christoffel symbols. The challenge in general relativity lies in selecting coordinate systems that simplify tensor formulas, as complexity can vary significantly across different systems. Ultimately, the relationship between index manipulation and coordinate systems is crucial for effective tensor analysis.
GR191511
Messages
76
Reaction score
6
In《Introducing Einstein's Relativity Ed 2》on page 106"lowering the first index with the metric,then it is easy to establish,for example by using geodesic coordinates..."
In 《A First Course in General Relativity - 2nd Edition》on page 159 "If we lower the index a,we get(in the locally flat coordinate system at its origin P)..."
What is the relationship between lowering or raising index and coordinate system transformation?
 
Physics news on Phys.org
The only relationship is that the components of the "lowered" Riemann tensor ##R_{abcd}## have a particularly simple form in that locally flat coordinate system.
Schutz uses that locally flat coordinate system in his presentation because it enables him to develop a fairly simple formula for Riemann tensor components in terms of metric components like ##g^{ab}## and ##g_{bu,sv}##, rather than in terms of Christoffel symbols (equation 6.63).
He gets a fairly simple formula for ##R^a{}_{bcd}## in that coordinate system (equation 6.65) and then gets an even simpler formula (equation 6.67) for ##R_{abcd}##, ie by lowering the first index.
Most tensor formulas will have coordinate systems in which their component formulas are simple, and in other systems they will be horribly complex. A key challenge in GR is to choose the coordinate system in which the component formulas will be simple and easy(er) to manipulate.
 
  • Like
Likes Ibix, vanhees71, GR191511 and 1 other person
andrewkirk said:
The only relationship is that the components of the "lowered" Riemann tensor ##R_{abcd}## have a particularly simple form in that locally flat coordinate system.
Schutz uses that locally flat coordinate system in his presentation because it enables him to develop a fairly simple formula for Riemann tensor components in terms of metric components like ##g^{ab}## and ##g_{bu,sv}##, rather than in terms of Christoffel symbols (equation 6.63).
He gets a fairly simple formula for ##R^a{}_{bcd}## in that coordinate system (equation 6.65) and then gets an even simpler formula (equation 6.67) for ##R_{abcd}##, ie by lowering the first index.
Most tensor formulas will have coordinate systems in which their component formulas are simple, and in other systems they will be horribly complex. A key challenge in GR is to choose the coordinate system in which the component formulas will be simple and easy(er) to manipulate.
Thank you!
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
5K
  • · Replies 22 ·
Replies
22
Views
837
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K