I Coordinate System Transformation: Lowering/Raising Indices Explained

GR191511
Messages
76
Reaction score
6
In《Introducing Einstein's Relativity Ed 2》on page 106"lowering the first index with the metric,then it is easy to establish,for example by using geodesic coordinates..."
In 《A First Course in General Relativity - 2nd Edition》on page 159 "If we lower the index a,we get(in the locally flat coordinate system at its origin P)..."
What is the relationship between lowering or raising index and coordinate system transformation?
 
Physics news on Phys.org
The only relationship is that the components of the "lowered" Riemann tensor ##R_{abcd}## have a particularly simple form in that locally flat coordinate system.
Schutz uses that locally flat coordinate system in his presentation because it enables him to develop a fairly simple formula for Riemann tensor components in terms of metric components like ##g^{ab}## and ##g_{bu,sv}##, rather than in terms of Christoffel symbols (equation 6.63).
He gets a fairly simple formula for ##R^a{}_{bcd}## in that coordinate system (equation 6.65) and then gets an even simpler formula (equation 6.67) for ##R_{abcd}##, ie by lowering the first index.
Most tensor formulas will have coordinate systems in which their component formulas are simple, and in other systems they will be horribly complex. A key challenge in GR is to choose the coordinate system in which the component formulas will be simple and easy(er) to manipulate.
 
  • Like
Likes Ibix, vanhees71, GR191511 and 1 other person
andrewkirk said:
The only relationship is that the components of the "lowered" Riemann tensor ##R_{abcd}## have a particularly simple form in that locally flat coordinate system.
Schutz uses that locally flat coordinate system in his presentation because it enables him to develop a fairly simple formula for Riemann tensor components in terms of metric components like ##g^{ab}## and ##g_{bu,sv}##, rather than in terms of Christoffel symbols (equation 6.63).
He gets a fairly simple formula for ##R^a{}_{bcd}## in that coordinate system (equation 6.65) and then gets an even simpler formula (equation 6.67) for ##R_{abcd}##, ie by lowering the first index.
Most tensor formulas will have coordinate systems in which their component formulas are simple, and in other systems they will be horribly complex. A key challenge in GR is to choose the coordinate system in which the component formulas will be simple and easy(er) to manipulate.
Thank you!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top