MHB Creating an absolute value equation from an inequallity

Click For Summary
To create an absolute value equation from the inequality -6 ≤ x ≤ 14, first recognize that this can be expressed in terms of absolute value. By subtracting 4 from each part of the inequality, you derive -10 ≤ x - 4 ≤ 10. This leads to the absolute value equation |x - 4| ≤ 10. Additionally, the general formula for converting an interval a ≤ x ≤ b into absolute value form is |x - (a + b)/2| ≤ (b - a)/2, which reinforces the derived equation. Understanding these transformations clarifies how to represent inequalities using absolute values effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
if you are given $$-6 \leq x \leq 14$$

from this how do you create an abs equation like $$|x-4| \leq 10$$

k
 
Mathematics news on Phys.org
Re: creating an abs equation

karush said:
if you are given $$-6 \leq x \leq 14$$

from this how do you create an abs equation like $$|x-4| \leq 10$$

k

Note that we can express the absolute value in terms of an inequality: $|y|\leq c \iff -c \leq y \leq c$.

Now, note that if we subtract 4 from each piece of $-6\leq x\leq 14$, we get $-10\leq x-4 \leq 10$. Thus, by what I mentioned in the first line, this means that $|x-4|\leq 10$.

Does this clarify things?
 
Re: creating an abs equation

karush said:
if you are given $$-6 \leq x \leq 14$$
from this how do you create an abs equation like $$|x-4| \leq 10$$

a \le x \le b converts to \left| {x - \frac{{a + b}}{2}} \right| \le \frac{{b - a}}{2}.

Think of the mid-point of [a,b] as well as the radius.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K