Hey everyone,(adsbygoogle = window.adsbygoogle || []).push({});

I've been reading up a bit on control systems theory, and needed to brush up a bit on my Laplace transforms. I know how to transform and invert the transform for pretty much every reasonable function, I don't have any technical issue with that. My only problem is that some theoretical things are not entirely intuitive.

This is my current understanding of the Fourier transform: We have an function, member of an infinite dimensional space, and we want to decompose it in terms of basis functions [itex]e^{j\omega t}[/itex]. To do so, we project (analogously to taking the dot product) our function onto the basis functions, using the following definition of an inner product for the function space: [itex]<f, g> = \int_{-\infty}^{+\infty}f(t)\cdot g^*(t)dt[/itex], which gives rise to the Fourier transform: [itex]F(j\omega) = \int_{-\infty}^{+\infty} f(t)\ e^{-j\omega t}\,dt[/itex]. Reconstructing the original function from the coefficients times the basis functions gives [itex]f(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} F(j\omega)\ e^{j\omega t}\,d\omega[/itex]

Now, looking at the definition of the Laplace transform, it looks like it's trying to do the same thing using underdamped/overdamped sinusoids of the form [itex]e^{\sigma t}e^{j\omega t}[/itex], instead of pure sinusoids like the FT. This enables representing functions which don't vanish at infinity, but rather can diverge exponentially. However, it doesn't quite fit in the framework I laid above. First of all, the inversion integral confuses me. [itex]\mathcal{L}^{-1} \{F(s)\}(t) = f(t) = \frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)e^{st}\,ds[/itex]. Why am I free to do the integration for any value of σ, as long as it's bigger than the real part of the rightmost pole? If I plug in [itex]s = \sigma + j \omega, ds = j d\omega[/itex], I can pull [itex]e^{\sigma t}[/itex] out of the integral, to get [itex]\mathcal{L}^{-1} \{F(s)\}(t) = f(t) = \frac{e^{\sigma t}}{2\pi}\int_{\infty}^{+\infty}F(\sigma+j\omega)e^{j\omega t}\,d\omega[/itex]. It appears strange to me that the [itex]e^{\sigma t}[/itex] term has to be exactly compensated by the fact that the transform is being evaluated more to the right or to the left. Also, when analyzing systems using the Laplace transform, the main thing we're interested in is the location of its zeros and poles. Intuitively, I would expect that, since the function "blows up" at the poles, there would be large contributions from those amplitudes in the inversion integral if it passed near the poles. However, if it can pass arbitrarily far away from the poles, it doesn't make as much sense...

I'm sorry if I'm not explaining myself as well as I wanted to, but this isn't really that easy to express...

Cheers

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Creating intuition about Laplace & Fourier transforms

Loading...

Similar Threads - Creating intuition Laplace | Date |
---|---|

I Intuitive understanding of Euler's identity? | Thursday at 4:52 AM |

I Algorithm to create a composite score | Sep 12, 2017 |

I Using trigonometry to create a radar for a game. | Jun 4, 2017 |

B Creating a 4 dimensional cube | Feb 11, 2017 |

B Creating Equation Based on Data Set of x,y Values | Nov 15, 2016 |

**Physics Forums - The Fusion of Science and Community**