B Creating Metric Describing Large Disk

Onyx
Messages
141
Reaction score
4
TL;DR Summary
How can I create a metric describing the space outside a large disk, like an elliptical galaxy?
How can I create a metric describing the space outside a large disk, like an elliptical galaxy? In cylindrical coordinates, ##\phi## would be the angle restricted the the plane, as ##\rho## would be the radius restricted to the plane. I think that if ##z## is suppressed to create an embedding function with just ##\rho## and ##\phi##, it would look very much like the Schwarzschild case, since it is a circle in the plane. But if I suppressed ##\phi##, I think the embedding function of that plane would have arguments of both ##\rho## and ##z##, and it would look more oblong. So I feel like the metric must have these features, but I'm not sure specifically in what arrangment.
 
Physics news on Phys.org
Onyx said:
TL;DR Summary: How can I create a metric describing the space outside a large disk, like an elliptical galaxy?
Take a look at this 1996 Helvetica Physica Acta paper and its references:

Relativistically rotating dust
by G. Neugebauer, A. Kleinwachter and R. Meinel
Abstract: Dust configurations play an important role in astrophysics and are the simplest models for rotating bodies. The physical properties of the general–relativistic global solution for the rigidly rotating disk of dust, which has been found recently as the solution of a boundary value problem, are discussed.

Available here: https://arxiv.org/pdf/gr-qc/0301107.pdf
 
This seems right if considering a significantly rotating disk, but unless I'm mistaken most galaxies don't rotate very fast in proportion to their disk radius. I found another metric describing a stationary and static ellipse, as described in this paper. However, I don't understand why the ##g_{tt}## term is still the same as in the Schwarzschild case; since this metric does not have spherical symmetry, I would have thought it would be different.
 

Attachments

Onyx said:
I found another metric describing a stationary and static ellipse, as described in this paper.
I wouldn't rely on this paper. It appears in International Journal of the Physical Sciences from "Academic Journals", which is on Beall's list of predatory publishers. Can you find this same metric in a proper journal or textbook?
 
  • Like
Likes vanhees71 and PeterDonis
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top