I Cross Product in E_u: Explaining Gourgoulhon's Text

aclaret
Messages
24
Reaction score
9
I study from Gourgoulhon's text 'special relativity in general frames', I have some difficulty to understanding Chapter 3 Page 84. I already learn that there exist a orthogonal projection mapping ##\bot_{u}:E \rightarrow E_u(P)## from the vector space ##E \cong R^4## to the subspace ##E_u(P)## associated with local rest space ##\mathscr{E}_u(P)## of the observer at event ##P##.

Now want to proof the proposition (3.37), that given timelike ##u \in E## and antisymmetric bilinear form ##A##, there exist unique form ##q = A(., u) \in E^*## and unique vector ##b \in E## such that ##A = u \otimes q - q \otimes u + \epsilon(u, b, \dots)##. During proof author writes "By metric duality, ##\epsilon_u## induces the cross product of two vectors of ##E_u## by $$\forall (v, w) \in {E_u}^2, \quad v \times_u w := \epsilon_u (v, w, \dots) = \epsilon(u, v, w, \dots)$$where ##\epsilon_u(v,w \dots)## stands for vector of ##E_u## associated by ##g##-duality to the linear form ##E_u \rightarrow R##, ##z \mapsto \epsilon(v, w, z)##... [and] ##\varepsilon(u,v,w, \dots)## stands for vector in ##E## that is ##g##-dual of the linear form ##E \rightarrow R, z \mapsto \epsilon(u,v,w,z)##"

I don't understand this part, please somebody can please explain how exactly this induces a cross product? (I do undertand what author mean by metric duality, that is simply the map ##\Phi_g## associating any ##u \in E## to a one-form ##\tilde{u} \in E^*## such that satisfy ## \langle \tilde{u}, v \rangle = g(u,v)## for all ##v \in E##, but I don't understand how it relate to the concept above).
 
Last edited:
Physics news on Phys.org
Not sure which part is unclear to you. In 3D space there is one trilinear antisymmetric form (up to a constant multiple). If you feed two vectors into it, you get a one form. By metric duality it gives you a vector.
 
Thank yes I did now understand, what confuse me is that it look on paper like the object ##\epsilon_u(v,w, \dots)## is a oneform ##E_u \rightarrow R## (LV tensor with a one unfilled slot for a vector), but author instead mean that this object above is g-dual ##(\in E_u##) of what I thinking before. so I simply was imagining the isomorphism wrong way round in my brain ;) ;)

apologise for trivial question :), thank @martinbn
 
No need for apology. It is worded in an unusual way. It is easy to loose track of the notations and not see the forest because of the trees.
 
  • Like
Likes aclaret and vanhees71
For me In 3D space there is one trilinear antisymmetric form
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top