I Cross Product in E_u: Explaining Gourgoulhon's Text

aclaret
Messages
24
Reaction score
9
I study from Gourgoulhon's text 'special relativity in general frames', I have some difficulty to understanding Chapter 3 Page 84. I already learn that there exist a orthogonal projection mapping ##\bot_{u}:E \rightarrow E_u(P)## from the vector space ##E \cong R^4## to the subspace ##E_u(P)## associated with local rest space ##\mathscr{E}_u(P)## of the observer at event ##P##.

Now want to proof the proposition (3.37), that given timelike ##u \in E## and antisymmetric bilinear form ##A##, there exist unique form ##q = A(., u) \in E^*## and unique vector ##b \in E## such that ##A = u \otimes q - q \otimes u + \epsilon(u, b, \dots)##. During proof author writes "By metric duality, ##\epsilon_u## induces the cross product of two vectors of ##E_u## by $$\forall (v, w) \in {E_u}^2, \quad v \times_u w := \epsilon_u (v, w, \dots) = \epsilon(u, v, w, \dots)$$where ##\epsilon_u(v,w \dots)## stands for vector of ##E_u## associated by ##g##-duality to the linear form ##E_u \rightarrow R##, ##z \mapsto \epsilon(v, w, z)##... [and] ##\varepsilon(u,v,w, \dots)## stands for vector in ##E## that is ##g##-dual of the linear form ##E \rightarrow R, z \mapsto \epsilon(u,v,w,z)##"

I don't understand this part, please somebody can please explain how exactly this induces a cross product? (I do undertand what author mean by metric duality, that is simply the map ##\Phi_g## associating any ##u \in E## to a one-form ##\tilde{u} \in E^*## such that satisfy ## \langle \tilde{u}, v \rangle = g(u,v)## for all ##v \in E##, but I don't understand how it relate to the concept above).
 
Last edited:
Physics news on Phys.org
Not sure which part is unclear to you. In 3D space there is one trilinear antisymmetric form (up to a constant multiple). If you feed two vectors into it, you get a one form. By metric duality it gives you a vector.
 
Thank yes I did now understand, what confuse me is that it look on paper like the object ##\epsilon_u(v,w, \dots)## is a oneform ##E_u \rightarrow R## (LV tensor with a one unfilled slot for a vector), but author instead mean that this object above is g-dual ##(\in E_u##) of what I thinking before. so I simply was imagining the isomorphism wrong way round in my brain ;) ;)

apologise for trivial question :), thank @martinbn
 
No need for apology. It is worded in an unusual way. It is easy to loose track of the notations and not see the forest because of the trees.
 
  • Like
Likes aclaret and vanhees71
For me In 3D space there is one trilinear antisymmetric form
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top