CaptainBlack
				
				
			 
			
	
	
	
		
	
	
			
		
		
			
			
				
- 801
- 0
Reposted from Yahoo Answers
2. Let X be a random variable that follows a Uniform(0; 1) distribution.
(a) Show that E(X) = 1/2 and Var(X) = 1/12.
(b) Using Chebyshev's inequality find an upper bound on the prob-
ability that X is more than k standard deviations away from its
expected value.
(c) Compute the exact probability that X is more than k standard
deviations from its expected value.
( d) Compare the bound to the exact probability.Thanks
				
			2. Let X be a random variable that follows a Uniform(0; 1) distribution.
(a) Show that E(X) = 1/2 and Var(X) = 1/12.
(b) Using Chebyshev's inequality find an upper bound on the prob-
ability that X is more than k standard deviations away from its
expected value.
(c) Compute the exact probability that X is more than k standard
deviations from its expected value.
( d) Compare the bound to the exact probability.Thanks
 
 
		 
 
		