MHB DE 20 ty'+(t+1)y=t y(\ln{2}=1, t>0

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion revolves around solving the differential equation ty' + (t+1)y = t with the initial condition y(ln{2}) = 1 for t > 0. Participants rewrite the equation in standard form and identify the integrating factor as te^t. They emphasize the importance of simplifying expressions to facilitate integration and highlight the unique properties of the exponential function e, which makes it prevalent in calculus. The final solution derived is y = (t - 1 + 2e^{-t}) / t, confirming the initial condition. The conversation underscores the necessity of simplification in solving differential equations effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9709
#20 this is the last one of the set
$ty'+(t+1)y=t \quad y(\ln{2}=1,\quad t>0$
rewrite
$y'+\left(\dfrac{t+1}{t}\right)y=1$
$u(t)=e^{\displaystyle\int\dfrac{t+1}{t}dt}=e^{t+\ln |t|}$well anyway wasn't sure about the (t+1):cool:
 
Physics news on Phys.org
karush said:
#20 this is the last one of the set
$ty'+(t+1)y=t \quad y(\ln{2}=1,\quad t>0$
rewrite
$y'+\left(\dfrac{t+1}{t}\right)y=1$
$u(t)=e^{\displaystyle\int\dfrac{t+1}{t}dt}=e^{t+\ln |t|}$well anyway wasn't sure about the (t+1):cool:

The integrating factor is correct, but again, simplify it so you can integrate.

$\displaystyle \mathrm{e}^{t + \ln{(t)}} = \mathrm{e}^{\ln{(t)}}\,\mathrm{e}^t = t\,\mathrm{e}^t $
 
ok is that the reason e is used so much?

Ill continue in the morning...:cool:
 
Is what the reason "e" is used so much? "e^x" has the nice property that the derivative of e^x is just e^x again! Also any exponential can be written as "e": a^x= e^{ln(a^x)}= e^{x ln(a)}.

Those are the reasons "e" is used so much.
 
Prove It said:
The integrating factor is correct, but again, simplify it so you can integrate.

$\displaystyle \mathrm{e}^{t + \ln{(t)}} = \mathrm{e}^{\ln{(t)}}\,\mathrm{e}^t = t\,\mathrm{e}^t $
#20
$\displaystyle u(t)={e}^{t + \ln{(t)}} = {e}^{\ln{(t)}}\,{e}^t = t\,{e}^t $
so
$(t\,{e}^t )ty'+(t\,{e}^t )(t+1)y=(t\,{e}^t )t$
Ok not sure way to rewrite this due to the (t+1) thot could divide by $t^2$

here are book answersView attachment 9711
 

Attachments

  • DE.2.1.1.13-20.jpg
    DE.2.1.1.13-20.jpg
    23.1 KB · Views: 138
$ty' + (t+1) \cdot y = t$

divide every term by $t$ ...

$y' + \dfrac{t+1}{t} \cdot y = 1$

multiply every term by $te^t$ ...

$te^t \cdot y' + (t+1)e^t \cdot y = te^t$

$(te^t \cdot y)' = te^t$

$\displaystyle te^t \cdot y = \int te^t \, dt$

keep going ...
 
skeeter said:
$ty' + (t+1) \cdot y = t$
divide every term by $t$ ...
$y' + \dfrac{t+1}{t} \cdot y = 1$
multiply every term by $te^t$ ...
$te^t \cdot y' + (t+1)e^t \cdot y = te^t$
$(te^t \cdot y)' = te^t$
$\displaystyle te^t \cdot y = \int te^t \, dt$
keep going ...

IBP
$e^tt-e^t +c$
so
$ te^t \cdot y=e^tt-e^t +c$
then
$y=\dfrac{e^tt}{te^t}-\dfrac{e^t }{te^t}+\dfrac{c}{te^t}
=1-\dfrac{1}{t}+\dfrac{c}{te^t}$hopefully
 
keep going, apply the initial condition to determine $C$
 
skeeter said:
keep going, apply the initial condition to determine $C$

$y=\dfrac{e^tt}{te^t}-\dfrac{e^t }{te^t}+\dfrac{c}{te^t}
=1-\dfrac{1}{t}+\dfrac{c}{te^t}=\dfrac{(t-1+(c)e^{-t})}{t}$$y(\ln 2)=1-\dfrac{1}{\ln 2}+\dfrac{c}{2\ln 2}$
$c=2$
so the book answer is $y=\dfrac{(t-1+2e^{-t})}{t},\quad t\ne 0$
 
  • #10
karush said:
$y=\dfrac{e^tt}{te^t}-\dfrac{e^t }{te^t}+\dfrac{c}{te^t}
=1-\dfrac{1}{t}+\dfrac{c}{te^t}=\dfrac{(t-1+(c)e^{-t})}{t}$$y(\ln 2)=1-\dfrac{1}{\ln 2}+\dfrac{c}{2\ln 2}$
$c=2$
so the book answer is $y=\dfrac{(t-1+2e^{-t})}{t},\quad t\ne 0$

Come on, surely you can see several common factors that cancel. I don't know why you seem to want to keep around difficult looking terms. The reason it's called "simplifying" is because it literally makes the expressions simpler!
 
  • #11
it's not that easy to see
 

Similar threads