A Decomposition of SU(2)-invariant spin network state in 3 dimensions

Bertin
Messages
12
Reaction score
6
Below follows the passage of Rovelli and Vidotto's Covariant Loop Quantum Gravity that I do not understand. To give the context, let me clarify that a state ##\psi## is a function in ##L^2[\text{SU}(2)^L]##, defined over a graph with ##L## edges (called ''links'' in this context) dressed with ##\text{SU}(2)## elements — that is, to each link ##l## we associate an ##\text{SU}(2)## element ##U_l## — and with ##N## trivalent vertices (called ''nodes'' in this context).

The point of this passage is to employ Peter-Weyl's theorem to decompose such a state ##\psi##, knowing that additionaly it is invariant under the action of ##\text{SU}(2)## at any of its nodes, that is, under the simultaneous action of an element of ##\text{SU}(2)## on all the ##\{U_l\}## corresponding to all edges ##\{l\}## meeting at any arbitrary node. This latter action encodes the gauge invariance of the theory.

KFrZ3RGy.png

My question is quite simple. Equation (5.29) gives the decomposition of ##\psi## and — as it should be the case — every index ##j,m,n## is summed over. However, following their introduction of the ##3j##-symbols due to the aforementioned gauge invariance, the authors end up with (5.32), where the indices ##n_1,\dots,n_L## are not summed over, at least not according to the mathematical expression. Is this a typo?

I considered the possibility that, since the action of ##\text{SU}(2)## should affect both indices ##m,n## of a Wigner matrix component ##D^j_{mn}(U)##, and given that the state should remain invariant under this action whenever it affects all the matrices associated to the edges meeting at a given node, then we should introduce two ##3j##-symbols per vertex (one for each index in a pair ##m,n##), leading instead to the decomposition

$$
\psi(U_1, \dots ,U_L) =
C_{j_1,...,j_L}\iota_1^{m_1m_2m_3}\iota_1^{n_1n_2n_3}
\cdots \iota_N^{m_{L-2}m_{L-1}m_{L}}\iota_N^{n_{L-2}n_{L-1}n_{L}}
D^{j_1}_{m_1n_1}(U_1) \cdots D^{j_{L}}_{m_Ln_L}(U_{L}),
$$

where repeated indices are summed over. Nevertheless, the last paragraph in this excerpt explicitly states that there is one ##3j##-symbol for each node. Consequently, my question: how exactly are the (apparently) free indices in (5.32) contracted?
 
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Many of us have heard of "twistors", arguably Roger Penrose's biggest contribution to theoretical physics. Twistor space is a space which maps nonlocally onto physical space-time; in particular, lightlike structures in space-time, like null lines and light cones, become much more "local" in twistor space. For various reasons, Penrose thought that twistor space was possibly a more fundamental arena for theoretical physics than space-time, and for many years he and a hardy band of mostly...
Back
Top