- #1
- 1,462
- 44
For any ##f:\Re \rightarrow \Re ##, is the only reason that we typically define the "rule" of the function with the the free variable, ##x##, as the argument of the function, e.g., ##f(x) = x^2 + 1##, because it's simply easier than having to do something like ##f(~) = (~)^2 + 1##? That is, does the use of ##x## not really serve a purpose when defining the function besides that of convenience and readability?
Also, as an extension to this question, if it is the case that the free variable ##x## is just there for convenience, then how would we right the differentiation operator ##\frac{\mathrm{d} }{\mathrm{d} x}##? Would you write it as ##\frac{\mathrm{d} }{\mathrm{d} (~)}## or something? Also, would one even be able to define the derivative ##\displaystyle\lim_{\Delta x\rightarrow 0}\frac{f(x + \Delta x ) - f(x)}{\Delta x}## without the use of the free variable ##x##?
Also, as an extension to this question, if it is the case that the free variable ##x## is just there for convenience, then how would we right the differentiation operator ##\frac{\mathrm{d} }{\mathrm{d} x}##? Would you write it as ##\frac{\mathrm{d} }{\mathrm{d} (~)}## or something? Also, would one even be able to define the derivative ##\displaystyle\lim_{\Delta x\rightarrow 0}\frac{f(x + \Delta x ) - f(x)}{\Delta x}## without the use of the free variable ##x##?