I Understanding Papapetrou's Spinning Test Particles in GR

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I'd appreciate some clarification of this passage in the paper Spinning test particles in general relativity by Papapetrou,

1630061195931.png


The definition is easy enough to understand, but what's the motivation? ##X^{\alpha}## are the coordinates of points on the worldline whilst ##x^{\alpha}## are presumably arbitrary spacetime coordinates (of points near the worldline).

n.b. ##\mathfrak{T}^{\mu \nu} = \sqrt{-g} T^{\mu \nu}## and\begin{align*}
\nabla_{\nu} T^{\mu \nu} = \partial_{\nu} T^{\mu \nu} + \Gamma^{\nu}_{\sigma \nu} T^{\mu \sigma} + \Gamma^{\mu}_{\sigma \nu} T^{\sigma \nu} &= 0 \\ \\

\implies \dfrac{1}{\sqrt{-g}} \partial_{\nu} \left( \sqrt{-g} T^{\mu \nu} \right) + \Gamma^{\mu}_{\sigma \nu} T^{\sigma \nu} &= 0\\

\partial_{\nu} \left( \sqrt{-g} T^{\mu \nu} \right) + \Gamma^{\mu}_{\sigma \nu} \sqrt{-g} T^{\sigma \nu} &= 0 \\

\partial_{\nu} \mathfrak{T}^{\mu \nu} + \Gamma^{\mu}_{\sigma \nu}\mathfrak{T}^{\sigma \nu} &= 0
\end{align*}
 
Last edited:
Physics news on Phys.org
It looks like a Cartesian multipole expansion similar as in electrodynamics, where you have the electric current density ##J^{\mu}## as a source, while here it's of course the energy-momentum tensor as a source of the gravitational field.

BTW: The scans via JSTOR are much better in quality:

https://www.jstor.org/stable/98893
 
  • Like
Likes ergospherical
ergospherical said:
I'd appreciate some clarification of this passage in the paper Spinning test particles in general relativity by Papapetrou,

View attachment 288176

The definition is easy enough to understand, but what's the motivation? ##X^{\alpha}## are the coordinates of points on the worldline whilst ##x^{\alpha}## are presumably arbitrary spacetime coordinates (of points near the worldline).
If beside \int d^3x \sqrt{-g} T^{\mu\nu} \neq 0, you have a vanishing higher moments, \int d^3x \sqrt{-g} \delta x^{\rho}T^{\mu\nu} = 0 for all \rho, \mu, \nu, then the object has no structure, i.e., a single-pole particle. And if the first moment does not vanish, i.e. for some values of the indices, \int d^3x \sqrt{-g} \delta x^{\rho}T^{\mu\nu} \neq 0, the object has a structure, i.e., pole-dipole particle. See equations 6,7 and 8 in
https://www.physicsforums.com/threa...-the-stress-energy-tensor.547502/post-3616065
 
Last edited:
  • Like
Likes vanhees71 and ergospherical
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top