MHB Degrees of Vertices IV: Graph is a Tree?

  • Thread starter Thread starter Joystar77
  • Start date Start date
  • Tags Tags
    Degrees
Joystar77
Messages
122
Reaction score
0
Let G be a graph with vertex set V = {v1, v2, v3, v4, v5}.

If the degrees of the vertices are 1, 2, 1, 3, 1, respectively, is G a tree? Why or why not?

2E = deg v1 + deg v2 + deg v3 + deg v4 + deg v5

2E = 1 + 2 + 1 + 3 + 1

2E = 8

E = 4

Yes, the degrees of vertices 1, 2, 1, 3, 1, G is a tree because the number of edges should be n-1 where n is the number of vertices.

Is this correct?
 
Physics news on Phys.org
Joystar1977 said:
Let G be a graph with vertex set V = {v1, v2, v3, v4, v5}.

If the degrees of the vertices are 1, 2, 1, 3, 1, respectively, is G a tree? Why or why not?

2E = deg v1 + deg v2 + deg v3 + deg v4 + deg v5

2E = 1 + 2 + 1 + 3 + 1

2E = 8

E = 4

Yes, the degrees of vertices 1, 2, 1, 3, 1, G is a tree because the number of edges should be n-1 where n is the number of vertices.

Is this correct?
Not bad. But you also need to show that $G$ is a connected graph. There can exist a graph on $n$ vertices which is disconnected (thus not a tree) and has $n-1$ edges. So just by virtue of having $n-1$ edges a graph doesn't become a tree. It needs to be connected too.
 
Thank you Caffeinemachine!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top