schrodingerscat11
- 86
- 1
Greetings! 
Starting from the Rodrigues formula, derive the orthonormality condition for the Legendre polynomials:
\int^{+1}_{-1} P_l(x)P_{l'}(x)dx=(\frac{2}{2l + 1}) δ_{ll'}
Hint: Use integration by parts
P_l= \frac{1}{2^ll!}(\frac{d}{dx})^l (x^2-1)^l (Rodrigues formula)
∫udv = uv -∫vdu (integration by parts)
\int^{+1}_{-1} P_l(x)P_{l'}(x)dx = \frac{1}{2^{l+l'}l!l'!} \int^{+1}_{-1} (\frac{d}{dx})^l \,(x^2-1)^l \, (\frac{d}{dx})^{l'} \,(x^2-1)^{l'}\,dx
Integrating by parts:
∫udv = uv -∫vdu
Let u = (\frac{d}{dx})^l (x^2-1)^l
\frac{du}{dx} = (\frac{d}{dx})^{l-1} (x^2-1)^{l-1}
du = (\frac{d}{dx})^{l-1} (x^2-1)^{l-1} dx
Let dv=(\frac{d}{dx})^{l'} (x^2-1)^{l'}dx
\int dv = \int (\frac{d}{dx})^{l'} (x^2-1)^{l'} dx
Question: How do I integrate \int (\frac{d}{dx})^{l'} (x^2-1)^{l'} dx ?
Thank you very much. :shy:
Homework Statement
Starting from the Rodrigues formula, derive the orthonormality condition for the Legendre polynomials:
\int^{+1}_{-1} P_l(x)P_{l'}(x)dx=(\frac{2}{2l + 1}) δ_{ll'}
Hint: Use integration by parts
Homework Equations
P_l= \frac{1}{2^ll!}(\frac{d}{dx})^l (x^2-1)^l (Rodrigues formula)
∫udv = uv -∫vdu (integration by parts)
The Attempt at a Solution
\int^{+1}_{-1} P_l(x)P_{l'}(x)dx = \frac{1}{2^{l+l'}l!l'!} \int^{+1}_{-1} (\frac{d}{dx})^l \,(x^2-1)^l \, (\frac{d}{dx})^{l'} \,(x^2-1)^{l'}\,dx
Integrating by parts:
∫udv = uv -∫vdu
Let u = (\frac{d}{dx})^l (x^2-1)^l
\frac{du}{dx} = (\frac{d}{dx})^{l-1} (x^2-1)^{l-1}
du = (\frac{d}{dx})^{l-1} (x^2-1)^{l-1} dx
Let dv=(\frac{d}{dx})^{l'} (x^2-1)^{l'}dx
\int dv = \int (\frac{d}{dx})^{l'} (x^2-1)^{l'} dx
Question: How do I integrate \int (\frac{d}{dx})^{l'} (x^2-1)^{l'} dx ?
Thank you very much. :shy: